

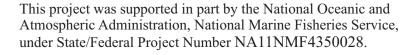
environmental and biological atlas of the gulf of mexico 2012

gulf states marine fisheries commission

number 237

november 2014

SEAMAP ENVIRONMENTAL AND BIOLOGICAL ATLAS OF THE GULF OF MEXICO, 2012


Edited by

Jeffrey K. Rester
Gulf States Marine Fisheries Commission

Manuscript Design and Layout

Ashley P. LottGulf States Marine Fisheries Commission

GULF STATES MARINE FISHERIES COMMISSION September 2014 Number 229

GULF STATES MARINE FISHERIES COMMISSION COMMISSIONERS

ALABAMA

N. Gunter Guy, Jr.
Alabama Department of Conservation and Natural Resources
64 North Union Street
Montgomery, AL 36130-1901

Steve McMillan P.O. Box 337 Bay Minette, AL 36507

Chris Nelson Bon Secour Fisheries, Inc. P.O. Box 60 Bon Secour, AL 36511

FLORIDA

Nick Wiley, Executive Director FL Fish and Wildlife Conservation Commission 620 South Meridian Street Tallahassee, FL 32399-1600

Senator Thad Altman State Senator, District 24 6767 North Wickham Road, Suite 211 Melbourne, FL 32940

Michael Hansen 393 Cooperwood Road Crawfordville, FL 32327

LOUISIANA

Robert Barham, Secretary LA Department of Wildlife and Fisheries P.O. Box 98000 Baton Rouge, LA 70898-9000 Senator R.L. "Bret" Allain, II 600 Main Street, Suite 1 Franklin, LA 70538

Campo "Camp" Matens 4554 Emory Avenue Baton Rouge, LA 70808

MISSISSIPPI

Jamie Miller, Executive Director Mississippi Department of Marine Resources 1141 Bayview Avenue Biloxi, MS 39530

Senator Brice Wiggins 1501 Roswell Street Pascagoula, MS 39581

Joe Gill, Jr.
Joe Gill Consulting, LLC
910 Desoto Street
Ocean Springs, MS 39566-0535

TEXAS

Carter Smith, Executive Director Texas Parks and Wildlife Department 4200 Smith School Road Austin, TX 78744

Troy B. Williamson, II P.O. Box 967 Corpus Christi, TX 78403

TBA

STAFF

David M. Donaldson Executive Director

Nancy K. Marcellus Cheryl R. Noble Steven J. VanderKooy Jeffrey K. Rester Gregory S. Bray Joseph P. Ferrer, III Douglas J. Snyder Deanna L. Valentine Donna B. Bellais Ralph E. Hode James R. Ballard Alexander L. Miller Lloyd W. Kirk Debora K. McIntyre

Alyce A. Ryan Angela R. Rabideau Ashley P. Lott

SEAMAP SUBCOMMITTEE

Mr. John Mareska, Chairman

Alabama Department of Conservation and Natural Resource

Ms. Chloe' Dean

Louisiana Department of Wildlife and

Fisheries

Dr. Read Hendon USM/Gulf Coast Research Laboratory

Dr. Fernando Martinez-Andrade Texas Parks and Wildlife Department

Dr. John Froeschke Gulf of Mexico Fishery Management Council

Mr. Butch Pellegrin National Marine Fisheries Service Pascagoula Laboratory

Mr. Bob McMichael

Florida Fish and Wildlife **Conservation Commission**

Florida Fish and Wildlife Research Institute

Mr. Jeff Rester

SEAMAP Coordinator Gulf States Marine Fisheries Commission

DATA COORDINATING WORK GROUP

Mr. Lloyd Kirk, Leader

Gulf States Marine Fisheries Commission

Mr. Butch Pellegrin

National Marine Fisheries Service

Pascagoula Laboratory

Dr. Joanne Shultz

National Marine Fisheries Service

Pascagoula Laboratory

Mr. Michael Harden

Louisiana Department of Wildlife and

Fisheries

Mr. John Anderson

USM/Gulf Coast Research Laboratory

Mr. Michael Murphy

Florida Fish and Wildlife

Conservation Commission

Florida Fish and Wildlife Research Institute

INTRODUCTION

The Southeast Area Monitoring and Assessment Program (SEAMAP) is a State/Federal/university program for the collection, management, and dissemination of fishery-independent data (information collected without direct reliance on statistics reported by commercial or recreational fishermen) in United States waters of the Gulf of Mexico (Eldridge 1988). A major SEAMAP objective is to provide a large, standardized database needed by management agencies, industry, and scientists to make sound management decisions and further develop fishery resources in a cost-efficient manner. To accomplish this goal, survey data must be disseminated in a useful format to SEAMAP participants, cooperators, and other interested organizations.

The SEAMAP Program began in March 1981 when the National Marine Fisheries Service (NMFS), Southeast Fisheries Science Center (SEFSC), presented a SEAMAP Strategic Plan (1981) to the Gulf States Marine Fisheries Commission (GSMFC). This strategic plan outlined the proposed program organization (goals, objectives, procedures, resource requirements, etc.). A SEAMAP Subcommittee was then formed within the existing framework of the GSMFC. The Subcommittee consists of one representative from each state fishery management agency [Florida Fish and Wildlife Conservation Commission (FWC); Alabama Department of Conservation and Natural Resources (ADCNR); Mississippi Department of Marine Resources (MDMR) represented by the University of Southern Mississippi, Gulf Coast Research Laboratory (USM/GCRL); Louisiana Department of Wildlife and Fisheries (LDWF); and Texas Parks and Wildlife Department (TPWD)], one from NMFS SEFSC and a non-voting member representing the Gulf of Mexico Fishery Management Council (GMFMC). The Subcommittee has organized and successfully coordinated numerous resource surveys from 1982 through 2012 (Table 1). The resultant data are published in atlases for the surveys in 1982 (Stuntz et al. 1985); 1983 (Thompson and Bane 1986a); 1984 (Thompson and Bane 1986b); 1985 (Thompson et al. 1988); 1986 (Sanders et al. 1990a); 1987 (Sanders et al. 1990b); 1988 (Sanders et al. 1991a); 1989 (Sanders et al. 1991b); 1990 (Sanders et al. 1992); 1991 (Donaldson et al. 1993); 1992 (Donaldson et al. 1994); 1993 (Donaldson et al. 1996); 1994 (Donaldson et al. 1997a); 1995 (Donaldson et al. 1997b); 1996 (Donaldson et al. 1998); 1997 (Rester et al. 1999); 1998 (Rester et al. 2000); 1999 (Rester et al. 2001); 2000 (Rester et al. 2002); 2001 (Rester et al. 2004); 2002 (Rester et al. 2008); 2003 (Rester et al. 2009); 2004 (Rester 2009); 2005 (Rester 2010); 2006 (Rester 2010); 2007 (Rester 2010); 2008 (Rester 2011); 2009 (Rester 2011); 2010 (Rester 2012); and 2011 (Rester 2014). Environmental assessment activities that occurred with each of the surveys can be found in Table 1. All data are available to researchers or interested individuals. Details about how to obtain SEAMAP data can be found in the Data Request section of this document.

In early 2012, the SEAMAP Subcommittee identified and began to plan the year's SEAMAP survey activities for the Gulf of Mexico. In keeping with the program goal of establishing a coordinated long-term resource database, it was decided to continue the same types of survey activities conducted in 1982 through 2011. Overall survey objectives in 1982 to 2012 were to assess the distribution and abundance of recreational and commercial organisms collected by plankton, trap/video, bottom longlines, hook and line, and trawl gears, and document environmental factors that might affect their distribution and abundance. Data from plankton surveys are used for detection and assessment of fishery resources; in the determination of spawning seasons and areas; in investigations of early survival and recruitment mechanisms; and in estimation of the abundance of a stock based on its spawning production (Sherman et al. 1983). Assessment of the Texas Closure (Nichols 1982, 1984; Nichols and Poffenberger 1987) was the rationale for the establishment of the trawl surveys and to establish a seasonal database to assess the abundance and distribution of the shrimp and groundfish

stocks across the northern Gulf of Mexico. The Reef Fish Survey is designed to determine the relative abundance of reef fish populations and habitat using a fish trap/video recording system (Russell, unpublished report).

A major purpose of SEAMAP is to provide resource survey data to State and Federal management agencies and universities participating in SEAMAP activities. This thirtieth in a series of SEAMAP environmental and biological atlases presents such data, in a summarized form, collected during the 2012 SEAMAP surveys.

MATERIALS AND METHODS

Methodology for the 2012 SEAMAP surveys is similar to that of the 1982 through 2011 surveys. Sampling was conducted within the U.S. Exclusive Economic Zone (EEZ) and state territorial waters. The NOAA Ship OREGON II collected plankton and environmental data during the Winter Plankton Survey from January 29 to February 27. The NOAA Ship GORDON GUNTER collected plankton and environmental data during the Spring Plankton Survey from April 2 to May 27, while the USM/GCRL vessel TOMMY MUNRO sampled on May 4 and May 16, and the Louisiana vessel BLAZING SEVEN sampled from May 8-10. Vessels that participated in collecting plankton and environmental data during the Fall Plankton Survey included the NOAA Ship GORDON GUNTER (August 25 - September 28), the Alabama vessel DISCOVERY (September 4), the Louisiana vessel BLAZING SEVEN (September 10-12), and USM/GCRL vessel TOMMY MUNRO (September 11-12 and September 21).

Vessels that participated in the Summer Shrimp/Groundfish Survey and concurrently sampled plankton and environmental data included the USM/GCRL vessel TOMMY MUNRO (May 29 – May 31), the Louisiana vessel PELICAN (June 5-8), and the NOAA Ship OREGON II (June 7 – July 15). The Alabama vessel DISCOVERY (June 29-30), Texas vessels SAN JACINTO, MATAGORDA BAY, R.J. KEMP, and SAN ANTONIO BAY (June 5 – July 3), and Florida using the TOMMY MUNRO (June 7 - July 4) did not sample plankton in conjunction with the summer survey.

The NOAA Ship CARETTA participated in the Reef Fish Survey from January 29 – March 17, with the PISCES sampling from April 6 – May 7, and the NOAA Ship GANDY sampling from June 30 – August 25. Florida sampled from July 6-14 aboard the R/V Weatherbird II and from July 24 – August 15 aboard the R/V BELLOWS.

Vessels that participated in the Fall Shrimp/Groundfish Survey and concurrently sampled plankton and environmental data included the NOAA Ships OREGON II (October 11 – November 17); the USM/GCRL vessel TOMMY MUNRO (October 3-4); and the Louisiana vessel PELICAN (October 30 – November 2). The Alabama vessel DISCOVERY (October 9-10) and Texas vessels SAN JACINTO, SABINE LAKE, MATAGORDA BAY, SAN ANTONIO BAY, and R.J. KEMP (November 1-26) did not sample plankton in conjunction with the fall survey.

Louisiana, Mississippi, and Alabama conducted bottom longline sampling monthly from March to October as part of the Bottom Longline Survey. Texas conducted bottom longline sampling from June through October.

Alabama sampled reef fish over artificial and natural reefs during the Vertical Line Survey. Alabama conducted sampling in March, May, and August. Louisiana sampled in July, September, and October.

PLANKTON SURVEYS

Since 1982, SEAMAP resource surveys have been conducted by the National Marine Fisheries Service in cooperation with the states of Florida, Alabama, Mississippi, Louisiana, and Texas. Plankton sampling is carried out during these surveys at predetermined SEAMAP stations arranged in a fixed, systematic grid pattern across the entire Gulf of Mexico. Most but not all SEAMAP stations (designated by a unique SEAMAP number) are located at ~56 km or ½-degree intervals along this grid. Some SEAMAP stations are located at < 56 km intervals especially along the continental shelf edge, while others have been moved to avoid obstructions, navigational hazards, or shallow water. Most SEAMAP plankton samples are taken during either dedicated plankton or shrimp/bottomfish (trawl) surveys, but over the years additional samples were taken using SEAMAP gear and collection methods at locations other than designated SEAMAP stations and/or outside established SEAMAP surveys, e.g. during Louisiana seasonal trawl surveys, SEAMAP Squid/Butterfish survey; and other serendipitous or special projects.

The sampling gear and methodology used to collect SEAMAP plankton samples are similar to those recommended by Kramer et al. (1972), Smith and Richardson (1977) and Posgay and Marak (1980). A 61 cm bongo net fitted with 0.333 (0.335)¹ mm mesh netting is fished in an oblique tow path from a maximum depth of 200 m or to 2-5 m off the bottom at depths less than 200 m. A mechanical flowmeter is mounted off-center in the mouth of each bongo net to record the volume of water filtered. Volume filtered ranges from ~20 to 600 m³, but is typically 30 to 40 m³ at the shallowest stations and 300 to 400 m³ at the deepest stations. A single or double 2x1 m pipe frame neuston net fitted with 0.947 (0.950)¹ mm mesh netting is towed at the surface with the frame half-submerged for 10 minutes. Samples are taken upon arrival on station regardless of time of day. At each station either a bongo and/or neuston tow are made depending on the specific survey. Samples are routinely preserved in 5 to 10% formalin and later transferred after 48 hours to 95% ethanol for long-term storage. During some surveys, selected samples are preserved initially in 95% ethanol and later transferred to fresh ethanol.

Initial processing of one bongo sample and one neuston sample from each SEAMAP station was accomplished at the Sea Fisheries Institute, Plankton Sorting and Identification Center (ZSIOP), in Szczecin, Poland, under a Joint Studies Agreement with NMFS. Wet plankton volumes of bongo net samples were measured by displacement to estimate net-caught zooplankton biomass (Smith and Richardson 1977). Fish eggs and larvae were removed from bongo net samples, and fish larvae only from neuston net samples. Fish eggs were not identified further, but larvae were identified to the lowest possible taxon (to family in most cases). Body length (either notochord or standard length) was measured.

Sorted ichthyoplankton specimens from ZSIOP were sent to the SEAMAP Archiving Center, managed in conjunction with the FWC, for long-term storage under museum conditions. Sorted ichthyoplankton samples from 1982 through 2010 are available for loan to researchers throughout the country. The alternate bongo and neuston samples from each station are retained at USM/GCRL as a

¹Mesh size change in database does not represent an actual change in gear but only a change in the accuracy at which plankton mesh aperture size can be measured by the manufacturer.

backup for those samples transshipped to ZSIOP in case of loss or damage during transit. These backup unsorted plankton samples are curated and housed at the SEAMAP Invertebrate Plankton Archiving Center, managed in conjunction with USM/GCRL, and are available for use by researchers.

See the SEAMAP Operations Manual for a more detailed description of sampling methods and protocols. Refer to the NOAA vessel cruise reports for more specific information on the individual SEAMAP Plankton Surveys conducted during 2012.

ENVIRONMENTAL DATA

Standardized methodology was used although the actual parameters measured varied among vessels participating in each survey. These parameters were measured based on equipment availability. The following parameters were recorded:

<u>Vessel</u>: Vessel code for each vessel.

Station: Station identifiers varied by state and vessel.

Cruise: Cruise numbers varied by state and vessels.

Date: Month/Day/Year.

<u>Time</u>: Local time and time zone, recorded at the start of sampling.

<u>Latitude/longitude</u>: Recorded to seconds. <u>Barometric pressure</u>: Recorded in millibars. Wave height: Estimated visually in meters.

<u>Wind speed and direction</u>: Recorded in knots with direction recorded in compass degrees from which the wind was blowing.

Air temperature: Recorded in Centigrade.

<u>Cloud cover</u>: Estimated visually in percent cloud cover.

Secchi depth: Secchi depth in meters, estimated at each daylight station. Standard oceanographic 30-cm white discs were lowered until no longer visible, and then raised until visible. If different depths were recorded, an average was used.

Water Color: Forel-Ule data was recorded.

The following parameters were measured at the surface, mid-depth, and bottom; for bottom depths greater than 200 m, samples were taken at surface, 100 m and 200 m:

<u>Water temperature</u>: Temperatures were measured by a hand-held thermometer or by <u>in situ</u> electronic sensors onboard ship. No attempt was made to intercalibrate the various instruments used on individual vessels although several vessels did sample together to calibrate other sampling gear. Some error can be expected.

<u>Salinity</u>: Salinity samples were collected by Niskin bottles and stored for laboratory analysis with a salinometer. Conductivity probes or refractometers were used on some vessels. Salinity samples were also measured with <u>in situ</u> electronic sensors.

<u>Chlorophyll</u>: Chlorophyll samples were collected and frozen for later laboratory analysis. The general procedure for shipboard collection of chlorophyll was to collect more than 9 liters of water from the surface. This was kept stirred by bubbling air through it while filtration was being done. Three samples, to each of which a 1 ml, 1% (W/V), suspension of MgCO₃ was added, of up to 3 liters of water from the 9 liter sample were filtered through GF/C filters.

The three filters were placed individually in Petri dishes, wrapped in opaque material and frozen until analysis. Each of the three samples was analyzed separately in the laboratory.

Laboratory analyses for chlorophyll a and phaeophytin a (chlorophyll degradation product) were conducted by fluorometry and spectrophotometry. The general extraction procedures prior to measurement were similar. Samples analyzed by spectrophotometer included other chlorophyllous products, but these have not been included as data in this report. The methodology used is described in Strickland and Parsons (1972) and Jeffrey and Humphrey (1975). Some of the values have been deleted from the database because of analytical errors. In addition, chlorophyll samples data were also collected using a CTD. This method only obtains measures of chlorophyll a and is a measure of fluorescence (FL).

<u>Dissolved oxygen</u>: Dissolved oxygen values were measured by electronic probes or by the Winkler titration method. No attempts were made to intercalibrate the methods. When oxygen was measured in samples collected from a Niskin sampler, the oxygen bottles were allowed to overflow a minimum of 10 seconds to eliminate oxygen contamination. The tubing which delivered the water sample was inserted to the bottom of the bottle and withdrawn while the sample was still flowing. The oxygen bottles were sealed with a ground-glass stopper and analyzed onboard the vessels.

<u>Turbidity</u>: Turbidity values were measured by electronic probes when equipment was available.

TRAWL SURVEYS

Summer Shrimp/Groundfish Survey

In the fall of 2008, NMFS changed their method of selecting sampling sites. The states adopted this change beginning in 2010. Diurnal stratifications were dropped in the selection process, and geographic strata (which were mostly 2 to 3 statistical zone groupings) were changed to single statistical zones (Figure 1). Both station selection methods, the old and the new, are probability based designs. With probability sampling, each unit in the survey population has a known, positive probability of selection. This property of probability sampling avoids selection bias and enables one to use statistical theory to make valid inferences from the sample to the survey population. More specifically, the new method employs probability proportional to size sampling. In this type of sampling, a unit's selection probability is proportional to its size measure which in this case is geographical surface area. For example, if Unit A has twice the surface area of Unit B, then Unit A will have twice the probability of having a sample selected from it than B. The end result is that Unit A will have about twice the number of samples as B. Even though diurnal strata were dropped in the sampling site selection process, this information is not lost since samples can be post-stratified. Following is an example of how sampling sites are now selected.

Bathymetry data were downloaded from the National Geophysical Data Center (NGDC) web site **NGDC** (Divins. D.L., and D. Metzger, Coastal Relief Model. http://www.ngdc.noaa.gov/mgg/coastal/coastal.html). Because of the magnitude of data, they were downloaded by single NMFS Shrimp Statistical Zones (Figure 1). The download process allows for the definition of a desired data block through user supplied latitude and longitude boundaries. Since the data definition process is controlled by latitude and longitude only, some undesired depths were included in downloads (i.e., for NMFS, depths less than five or greater than sixty fathoms). These records were deleted later through a Statistical Analysis System (SAS) program. Each bathymetric record represents a 3 arc-second element of data (≈ 0.05 -by-0.05 minutes of latitude and longitude);

therefore, the number of data records was used as a measure of size for each respective statistical zone. The bathymetry data were then used as input to a SAS program which performed three functions; defined the sampling universe, determined the sampling proportions according to sizes of statistical zones, and randomly selected the sample sites according to the defined proportions.

Thirty minutes was selected as a tow time standard that was long enough to obtain a good sample, but short enough to maintain the efficiency of the surveys. Therefore all SEAMAP vessels now use a standard tow time of 30 minutes except the Texas vessels. The Texas vessels tow 10 minutes parallel to the depth stratum.

All *Litopenaeus setiferus*, *Farfantepenaeus aztecus*, and *Farfantepenaeus duorarum* were separated from the trawl catch at each station. Total count and weight by species were recorded for each station. A sample of up to 200 shrimp of each species from every trawl was sexed and measured to obtain length-frequency information. Estimated total numbers were derived from the total weights of those processed. Other species of fishes and invertebrates were identified, enumerated, and weighed. Weights and individual measurements on selected species, other than commercial shrimp, were also recorded.

Fall Shrimp/Groundfish Survey

The design of the Fall Survey was similar to the Summer Shrimp/Groundfish Survey. During the Fall Survey trawl stations were made with the standard 40-ft and 20-ft SEAMAP nets and covered NMFS shrimp statistical zones 3 through 21 (Figure 1). Catch rates on all the vessels sampling were treated in the same manner as the Summer Shrimp/Groundfish Survey, with the exception to shrimp catches, where only 20 shrimp of each species from every trawl were measured, although Louisiana and Texas measure a minimum of 50 shrimp.

REEF FISH SURVEY

The primary purpose of this survey is to assess relative abundance and compute population estimates of reef fish found on natural reef fish habitat in the Gulf of Mexico. Two types of gear are used to deploy video cameras: 1) a single-funnel fish trap (2.13 m long by 0.76 m square) with the camera mounted at a height of 25 cm above the bottom of the trap; or 2) a 4 camera array with 4 cameras mounted orthogonal to each other at a height of 25 cm above the bottom. Both gears are baited with squid before deployment. The resultant video recordings (typically of one-hour duration) are processed back at the laboratory where fish are identified and counted independently by two tape readers. Final counts are entered into the SEAMAP reef fish database along with additional observations on habitat and fish activity.

The hardbottom database from which sampling sites for this survey are chosen was developed in the following manner. Areas of natural reef habitat from Brownsville, Texas to the southern tip of Florida (at 81° 00' W longitude and 24° 02' N latitude) and between 9 and 110 m water depth were first inscribed on navigation charts, then divided into 10 by 10 nautical mile blocks (primary sample units). Each block was subdivided into 100-m², secondary sample units that were numbered and initially classified as being "reef" or "nonreef" and then entered into a database. Prior to the survey, blocks are selected from this database in the eastern and western Gulf with probability proportional to the number of "reef" sample units within a block. Within each selected block, 100 sample sites are randomly selected. During the survey each selected block is occupied for one 24-h period, where

night hours are devoted to ship's echo sounder surveys of up to 100 sites and daytime hours to trap/video sampling. Each potential sample site surveyed at night is given a final determination as being either a reef site or not based on echo patterns, vertical relief and other characteristics. Up to 8 actual "reef" sites are then randomly selected for sampling during that day (Russell, unpublished report). Trap/video sampling begins one hour after sunrise and ends one hour before sunset. Trap soak time is one hour.

Associated environmental data collected at each site usually includes profiles of salinity, temperature, and surface chlorophyll; and may include profiles of dissolved oxygen, light transmittance, and fluorescence. Additional environmental and meteorological observations taken on stations follow standard SEAMAP methodology. During the NMFS component of the Reef Fish Survey, fish abundance is also measured with a fisheries acoustic device.

BOTTOM LONGLINE SURVEY

This nearshore survey complements an existing long-term fisheries independent survey currently being conducted by NMFS offshore, by targeting shark and finfish species within the shallow waters of the north central Gulf of Mexico. The objectives of the survey were to collect information on coastal shark and finfish abundances and distribution with a 1-mile longline and to collect environmental data. During the 2012 Bottom Longline Survey, the survey design included several sampling regions off Alabama, Mississippi, Louisiana, and Texas.

Stations were chosen randomly within each area and were stratified by depth (0-5m, 5-10m, and 10-20m). The stations were sampled over a four-day period between the hours of 7:30 a.m. and 7:30 p.m. each month. The sampling protocol follows the procedures established by the NMFS bottom longline survey. All equipment used in this inshore bottom longline survey is identical to the equipment used by NMFS. The longline gear consisted of a 1.6 km (426 kg test monofilament) mainline with 100 gangions (3.66 m, 332 kg test monofilament) containing #15/0 circle hooks (0 offset) and baited with Atlantic mackerel, *Scomber scomber*. The mainline was weighted down with a midpoint and endpoint weight. Radar high-flyers with strobe bullet buoys were used to mark the longline locations. A hydraulic longline reel was used for setting and retrieving the mainline. The longline was fished for 1-hr and then retrieved.

VERTICAL LINE SURVEY

In 2010, Alabama started a new vertical line survey to sample reef fish over natural and artificial reefs and other areas. The sampling gear used a typical commercial bandit rig that holds approximately 500 feet of clear 300 lb test mainline. A 24-ft. backbone (leader) was attached to the terminal end of the mainline. An approximately ten pound weight was attached to the terminal end of the backbone. The backbone was rigged with ten 18-inch long gangions at intervals of two feet. A total of 12 grids were fished per survey. Two structure and two non-structure areas were randomly chosen and equally allocated across three depth strata. Vertical line reels were baited with Atlantic mackerel. Soak time was five minutes. Fish were retained and processed for age and fecundity. All fish were sacrificed for otoliths at stations deeper than 60 m. In water depth less than 60 m, stations were assigned as tag and release or collection sites.

Louisiana started vertical line sampling in 2011. In Louisiana, the sampling frame is subdivided into 3 sampling blocks based on depth between 89 degrees longitude and 91 degrees longitude, with the

water depth ranging from 60 to 360 feet. Each block is sampled quarterly in a rotation. Within these sampling blocks there is a possibility of randomly selecting 40 different corridors within the block. The actual sites are randomly selected within the corridor boundary and sampled at the chief scientist's discretion. The sites roughly consist of artificial reefs, natural bottom, and petroleum production platforms.

RESULTS

PLANKTON SURVEYS

Plankton stations for the Winter Plankton Survey are shown in Figure 2. Plankton stations for the Spring Plankton Survey are shown in Figure 3. Plankton stations for the Fall Plankton Survey are shown in Figure 4.

TRAWL SURVEYS

Summer Shrimp/Groundfish Survey

Shrimp and groundfish sampling was conducted May through July from south Florida to Brownsville, Texas. Figure 5 shows station locations. The Summer Shrimp/Groundfish Survey consisted primarily of biological trawl data and concomitant environmental and plankton data. A species composition listing from the 40-ft and 20-ft trawls is presented in Table 2, ranked in order of abundance, within the categories of finfish, crustaceans, and other invertebrates.

Fall Shrimp/Groundfish Survey

Shrimp and groundfish sampling was conducted during October and November from Florida to Brownsville, Texas. Figure 6 shows the station locations. The Fall Shrimp/Groundfish Survey consisted of biological trawl data, concomitant environmental, and plankton data. A species composition listing from the 40-ft and 20-ft trawls is presented in Table 3, ranked in order of abundance, within the categories of finfish, crustaceans, and other invertebrates.

REAL-TIME DATA MANAGEMENT

The SEAMAP Subcommittee agreed it was imperative to the success of the SEAMAP Program to distribute data on a near real-time basis to the fishing industry and others interested in SEAMAP. Summarized data were distributed weekly to approximately 100 individuals during the Summer Shrimp/Groundfish Survey. The summarized data in the form of computer plots and data listings were sent to management agencies and industry members. These plots showed station locations, catches of brown, pink, and white shrimp in lb/hr and count/lb, and total finfish catch in lb/hr.

REEF FISH SURVEY

Primary data collection and sampling for reef fish assessment were conducted during January through August by NMFS personnel and during July and August by Florida personnel. Station locations are plotted in Figure 7. Video tapes from all sources were analyzed using NMFS standardized protocols.

BOTTOM LONGLINE SURVEY

Station locations for the Bottom Longline Survey are plotted in Figure 8. A species composition list is presented in Table 4. The species list is ranked in order of abundance.

VERTICAL LINE SURVEY

Station locations for the Vertical Line Survey are plotted in Figure 9. A species composition list, ranked in order of abundance, is presented in Table 5.

DISCUSSION

The quasisynoptic SEAMAP sampling program and the intended long-term nature of the sampling programs have been designed to provide the baseline data set needed for fishery management and conservation. In 1985, the SEAMAP long-term baseline data was disrupted by the loss of the Spring Plankton Survey and Fall Plankton Survey. In 1986, the SEAMAP Subcommittee renewed its commitment for the collection of baseline plankton data. These ichthyoplankton samples are and will continue to be used by researchers studying taxonomy, age and growth, bioenergetics, and other life history aspects, as well as spawning biomass and recruitment. Information on species' relative distributions within the Gulf of Mexico can be analyzed with respect to environmental data to assess population abundance as a function of environmental change.

Similar analyses and investigations are being undertaken with Summer and Fall Shrimp/Groundfish Survey data. These data sets are being utilized in resource management decisions, and because of the program's ability to process data quickly, the capability exists to optimize some fisheries on a real-time basis. The long-term data set on all of the species collected, not just those of commercial and recreational importance, offers an opportunity to examine ecological relationships, with the eventual goal of developing management models that take into account the multi-species nature of most Gulf fisheries. The value of the SEAMAP program lies in its use for both immediate and long-range management goals.

Much use has already been made of SEAMAP data. For example, during the past SEAMAP surveys an area of very low dissolved bottom oxygen was found off Louisiana in the summers of 1982, 1985-2012. The presence of this phenomenon and some of the related conditions and biological effects were reported by Leming and Stuntz (1984) and Hanifen et al. (1995), and during such occurrences, SEAMAP has distributed special environmental bulletins and news releases to management agencies and the shrimp industry. In addition, SEAMAP data were used to assist in the identification of the minimum 1997 reduction in red snapper shrimp trawl bycatch mortality rate that would enable the red snapper fishery to still recover to the 20% spawning potential ratio (SPR) by the year 2019 (Goodyear 1997). This analysis was requested and supported by the Gulf of Mexico Fishery Management Council to address the issue of red snapper bycatch. SEAMAP data were also used by some coastal states to determine the status of shrimp stocks and their movements just as the shrimping seasons were to be opened and SEAMAP data were used to develop a guide to the grouper species of the western North Atlantic Ocean (Grace et al. 1994). The primary purpose of the guide is for species identification with projects that deploy underwater video camera systems.

Since SEAMAP's inception in 1982, the goal of plankton activities in the Gulf of Mexico has been to collect data on the early life stages of fishes and invertebrates that will complement and enhance the fishery-independent data gathered on the adult life-stage (Lyczkowski-Shultz and Brasher 1996). An annual larval index for the Atlantic bluefin tuna is generated each year from the Spring Plankton Survey and is used by the International Commission for the Conservation of Atlantic Bluefin Tunas to estimate stock size (Scott et al. 1993). Larval indices generated from the Summer Shrimp/Groundfish and Fall Plankton Surveys have now become an integral part of the king mackerel assessment in the Gulf (Gledhill and Lyczkowski-Shultz 2000). Larvae from SEAMAP collections have formed the basis for formal descriptions of larval development for fishes such as the snappers, cobia, tripletail, and dolphin (Drass et al. 2000; Ditty and Shaw 1992; Ditty and Shaw 1993; Ditty et al. 1994). Data on distribution and relative abundance of larvae of all Gulf fishes captured during SEAMAP surveys have been summarized by Richards et al. 1984, Kelley et al. 1985, Kelley et al. 1990, and Kelley et al. 1993.

The SEAMAP data collected during the Summer Shrimp/Groundfish Survey continues to be used extensively for fishery management purposes. In 1981, the Gulf of Mexico Fishery Management Council's plan for shrimp was implemented (Center for Wetland Resources 1980), with one management measure calling for the temporary closure to shrimping in the EEZ off Texas. This closure complements the traditional closure of the Texas territorial sea, normally May 15 through early July of each year. The GMFMC determined that this type of closure would allow small brown shrimp to be protected from harvest, but would still allow the taking of larger brown shrimp by fishermen in deeper waters.

The National Marine Fisheries Service was charged with evaluating the effects of the Texas Closure and submitted a report to the GMFMC in January 2012. This report contained the results and an overview of the effect of the 2011 Texas Closure. After review of these data and other information, the GMFMC voted to continue the Texas Closure for 2012.

Data from all SEAMAP surveys have been used in the SouthEast Data, Assessment, and Review (SEDAR) process. SEDAR is a cooperative Fishery Management Council process initiated in 2002 to improve the quality and reliability of fishery stock assessments. SEDAR seeks improvements in the scientific quality of stock assessments and greater relevance of quantities information available to address existing and emerging fishery management issues. SEAMAP data have been used in stock assessments for king mackerel, red snapper, gray triggerfish, gag grouper, red grouper, mutton snapper, blacknose sharks, and blacktip sharks.

DATA REQUESTS

It is the policy of the SEAMAP Subcommittee that all verified non-confidential SEAMAP data, collected specimens, and samples shall be available to all SEAMAP participants, other fishery researchers, and management organizations. This atlas presents, to those individuals interested in the data or specimens, a chance to review the data in a summary form.

Data and specimen requests from SEAMAP participants, cooperators and others will normally be handled on a first-come, first-served, and time-available basis. Because of personnel and funding limitations, however, certain priorities must be assigned to the data and specimen requests. These priorities are reviewed by the SEAMAP Subcommittee. For further information on SEAMAP data

management, see the <u>Southeast Area Monitoring and Assessment Program (SEAMAP) Management</u> Plan: 2011-2015 (ASMFC 2011).

Data requests and inquiries, as well as requests for plankton samples, can be made by contacting Jeff Rester, the SEAMAP Coordinator, Gulf States Marine Fisheries Commission, 2404 Government Street, Ocean Springs, MS 39564; (228) 875-5912 or via e-mail at jrester@gsmfc.org.

LITERATURE CITED

- Atlantic States Marine Fisheries Commission. 2011. SEAMAP Management Plan: 2011-2015. Washington, DC: ASMFC.
- Center for Wetland Resources. 1980. Management plan and final environmental impact statement for the shrimp fishery of the Gulf of Mexico, United States waters. Louisiana State Univ., Baton Rouge, Louisiana. 185 p.
- Ditty, J.G. and R.F. Shaw. 1992. Larval development, distribution, and ecology of cobia *Rachycentron canadum* (Family: Rachycentridae), in the northern Gulf of Mexico. Fishery Bulletin. Vol. 90:668-677.
- Ditty, J.G. and R.F. Shaw. 1993. Larval development of tripletail, *Lobotes surinamensis* (Pisces: Lobotidae), and their spatial and temporal distribution in the northern Gulf of Mexico. Fishery Bulletin. Vol. 92:33-45.
- Ditty, J.G., R.F. Shaw, C.B. Grimes, and J.S. Cope. 1994. Larval development, distribution, and abundance of common dolphin, *Coryphaena hippurus*, and pompano dolphin, *C. equiselis* (Family: Coryphaenidae), in the northern Gulf of Mexico. Fishery Bulletin. Vol. 94:275-291.
- Donaldson, D.M., N.J. Sanders, and P.A. Thompson. 1993. SEAMAP environmental and biological atlas of the Gulf of Mexico, 1991. Gulf States Marine Fisheries Commission. No. 29. 321 p.
- Donaldson, D.M., N.J. Sanders, and P.A. Thompson. 1994. SEAMAP environmental and biological atlas of the Gulf of Mexico, 1992. Gulf States Marine Fisheries Commission. No. 30. 293 p.
- Donaldson, D.M., N.J. Sanders, P.A. Thompson and R. Minkler. 1996. SEAMAP environmental and biological atlas of the Gulf of Mexico, 1993. Gulf States Marine Fisheries Commission. No. 34. 284 p.
- Donaldson, D.M., N.J. Sanders, P.A. Thompson and R. Minkler. 1997a. SEAMAP environmental and biological atlas of the Gulf of Mexico, 1994. Gulf States Marine Fisheries Commission. No. 40. 277 p.
- Donaldson, D.M., N.J. Sanders, P.A. Thompson and R. Minkler. 1997b. SEAMAP environmental and biological atlas of the Gulf of Mexico, 1995. Gulf States Marine Fisheries Commission. No. 41. 280 p.
- Donaldson, D.M., N.J. Sanders, P.A. Thompson and D. Hanisko. 1998. SEAMAP environmental and biological atlas of the Gulf of Mexico, 1996. Gulf States Marine Fisheries Commission. No. 52. 263 p.
- Drass, D.M., K.L. Bootes, J. Lyczkowski-Shultz, B.H. Comyns, G.J. Holt, C.M. Riley, and R.P. Phelps. 2000. Larval development of red snapper, *Lutjanus campechanus*, with comparisons to co-occurring snapper species. Fishery Bulletin. Vol. 98(3):507-527.

- Eldridge, P.J. 1988. The Southeast Area Monitoring and Assessment Program (SEAMAP): A state-federal-university program for collection, management and dissemination of fishery-independent data and information in the southeast United States. Mar. Fish. Rev. 50(2): 29-39.
- Gledhill, C.T. and J. Lyczkowski-Shultz. 2000. Indices of larval king mackerel, *Scomberomorus cavalla*, for use in population assessment in the Gulf of Mexico. Fishery Bulletin. Vol. 98(4):684-691.
- Goodyear, C.P. 1997. An evaluation of the minimum reduction in the 1997 red snapper shrimp bycatch mortality rate consistent with the 2019 recovery target. GMFMC. 14 p. + appendix.
- Grace, M., K.R. Rademacher and M. Russell. 1994. Pictorial guide to the groupers (Teleostei: Serrenidae) of the western North Atlantic. NOAA Tech. Report. NMFS 118. 46 p.
- Hanifen, J.G., W.S. Perret, R.P. Allemand and T.L. Romaire. 1995. Potential impacts of hypoxia on fisheries: Louisiana=s fishery-independent data. *In* Proceedings of Gulf of Mexico Program=s Hypoxia Conference. November 1995, New Orleans, LA.
- Jeffrey, S.W. and G.F. Humphrey. 1975. New spectrophotometric equations for determining chlorophylls \underline{a} , \underline{b} , \underline{c}_1 and \underline{c}_2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanzer Bpp. 167: 191-194.
- Kelley, S., T. Potthoff, W.J. Richards, L. Ejsymont and J.V. Gartner. 1985. SEAMAP 1983 Ichthyoplankton. Larval distribution and abundance of Engraulididae, Carangidae, Clupeidae, Lutjanidae, Scriaenidae, Coryphaenidae, Istiophoridae, Xiphiidae and Scombridae in the Gulf of Mexico. NOAA Tech. Mem., NMFS-SEFC -167.
- Kelley, S., J.V. Gartner, Jr., W.J. Richards and L. Ejsymont. 1990. SEAMAP 1984 & 1985 Ichthyoplankton. Larval distribution and abundance of Carangidae, Clupeidae, Coryphaenidae, Engraulididae, Gobiidae, Istiophoridae, Lutjanidae, Scombridae, Serranidae, and Xiphiidae in the Gulf of Mexico. NOAA Tech. Mem., NMFS-SESC-317.
- Kelley, S., J.V. Gartner, Jr., W.J. Richards and L. Ejsymont. 1993. SEAMAP 1986 Ichthyoplankton. Larval distribution and abundance of Engraulididae, Carangidae, Clupeidae, Gobiidae, Lutjanidae, Serranidae, Coryphaenidae, Istiophoridae and Scombridae in the Gulf of Mexico. NOAA Tech. Mem., NMFS-SESC-245.
- Kramer, D., M.J. Kalin, E.G. Stevens, J.R. Thrailkill and J.R. Zweifel. 1972. Collecting and processing data on fish eggs and larvae in the California Current region. NOAA Technical Report. NMFS Circular 370. 38 p.
- Leming, T.D. and W.E. Stuntz. 1984. Zones of coastal hypoxia revealed by satellite scanning have implications for strategic fishing. Nature. 310 (5973): 131-138.
- Lyczkowski-Shultz, J. and R. Brasher. 1996. Ichthyoplankton data summaries from SEAMAP Summer Shrimp/Groundfish Surveys. Pages 27-42 *in* Uses of Fishery-Independent Data. General Session Proceedings, Gulf States Marine Fisheries Commission. No. 35.

- Nichols, S. 1982. Impacts of the 1981 and 1982 Texas closure on brown shrimp yields. NOAA, NMFS-SEFC. 44 p.
- Nichols, S. 1984. Impacts of the 1982 and 1983 closure of the Texas FCZ on brown shrimp yields. Report to the Gulf of Mexico Fishery Management Council.
- Nichols, S. and J.R. Poffenberger. 1987. Analysis of alternative closures for improving brown shrimp yield in the Gulf of Mexico. Report to the Gulf of Mexico Fishery Management Council.
- Posgay, J.A. and R.R. Marak. 1980. The MARMAP bongo zooplankton samplers. J. Northw. Atl. Fish. Sci. 1: 9-99.
- Rester, J.K. 2009. SEAMAP environmental and biological atlas of the Gulf of Mexico, 2004. Gulf States Marine Fisheries Commission. No. 173.
- Rester, J.K. 2010. SEAMAP environmental and biological atlas of the Gulf of Mexico, 2005. Gulf States Marine Fisheries Commission. No. 175.
- Rester, J.K. 2010. SEAMAP environmental and biological atlas of the Gulf of Mexico, 2006. Gulf States Marine Fisheries Commission. No. 179.
- Rester, J.K. 2010. SEAMAP environmental and biological atlas of the Gulf of Mexico, 2007. Gulf States Marine Fisheries Commission. No. 180.
- Rester, J.K. 2011. SEAMAP environmental and biological atlas of the Gulf of Mexico, 2008. Gulf States Marine Fisheries Commission. No. 191.
- Rester, J.K. 2011. SEAMAP environmental and biological atlas of the Gulf of Mexico, 2009. Gulf States Marine Fisheries Commission. No. 198.
- Rester, J.K. 2012. SEAMAP environmental and biological atlas of the Gulf of Mexico, 2010. Gulf States Marine Fisheries Commission. No. 206.
- Rester, J.K. 2014. SEAMAP environmental and biological atlas of the Gulf of Mexico, 2011. Gulf States Marine Fisheries Commission. No. 229.
- Rester, J.K., N.J. Sanders, P.A. Thompson and D. Hanisko. 1999. SEAMAP environmental and biological atlas of the Gulf of Mexico, 1997. Gulf States Marine Fisheries Commission. No. 63. 254 p.
- Rester, J.K., N.J. Sanders, G. Pellegrin, Jr. and D. Hanisko. 2000. SEAMAP environmental and biological atlas of the Gulf of Mexico, 1998. Gulf States Marine Fisheries Commission. No. 75. 243 p.

- Rester, J.K., N.J. Sanders, G. Pellegrin, Jr. and D. Hanisko. 2001. SEAMAP environmental and biological atlas of the Gulf of Mexico, 1999. Gulf States Marine Fisheries Commission. No. 82. 247 p.
- Rester, J.K., N.J. Sanders, G. Pellegrin, Jr. and D. Hanisko. 2002. SEAMAP environmental and biological atlas of the Gulf of Mexico, 2000. Gulf States Marine Fisheries Commission. No. 101. Available on CD-ROM only.
- Rester, J.K., N.J. Sanders, G. Pellegrin, Jr., and D. Hanisko. 2004. SEAMAP environmental and biological atlas of the Gulf of Mexico, 2001. Gulf States Marine Fisheries Commission. No. 118. Available on CD-ROM only.
- Rester, J.K., N.J. Sanders, and G. Pellegrin, Jr. 2008. SEAMAP environmental and biological atlas of the Gulf of Mexico, 2002. Gulf States Marine Fisheries Commission. No. 156.
- Rester, J.K., N.J. Sanders, and G. Pellegrin, Jr. 2009. SEAMAP environmental and biological atlas of the Gulf of Mexico, 2003. Gulf States Marine Fisheries Commission. No. 172.
- Richards, W.J., T. Potthoff, S. Kelley, M.F. McGowan, L. Ejsymont, J.H. Power and R.M. Olvera L. 1984. SEAMAP 1982 Ichthyoplankton. Larval distribution and abundance of Engraulididae, Carangidae, Clupeidae, Lutjanidae, Serranidae, Sciaenidae, Coryphaenidae, Istiophoridae, Xiphiidae and Scombridae in the Gulf of Mexico. NOAA Tech. Mem., NMFS-SEFC-167.
- Russell, G.M. Unpublished report. Reef fish assessment methodology for SEAMAP surveys of hardbottom areas. National Marine Fisheries Service. 25 p.
- Sanders, N.J., P.A. Thompson and T. Van Devender. 1990a. SEAMAP environmental and biological atlas of the Gulf of Mexico, 1986. Gulf States Marine Fisheries Commission. No. 20. 328 p.
- Sanders, N.J., P.A. Thompson and D.M. Donaldson. 1990b. SEAMAP environmental and biological atlas of the Gulf of Mexico, 1987. Gulf States Marine Fisheries Commission. No. 22. 337 p.
- Sanders, N.J., D.M. Donaldson and P.A. Thompson. 1991a. SEAMAP environmental and biological atlas of the Gulf of Mexico, 1988. Gulf States Marine Fisheries Commission. No. 23. 320 p.
- Sanders, N.J., D.M. Donaldson and P.A. Thompson. 1991b. SEAMAP environmental and biological atlas of the Gulf of Mexico, 1989. Gulf States Marine Fisheries Commission. No. 25. 318 p.
- Sanders, N.J., D.M. Donaldson and P.A. Thompson. 1992. SEAMAP environmental and biological atlas of the Gulf of Mexico, 1990. Gulf States Marine Fisheries Commission. No. 27. 311 p.
- Scott, G.P., S.C. Turner, C.B. Grimes, W.J. Richards, and E.B. Brothers. 1993. Indices of larval bluefin tuna, *Thunnus thynnus*, abundance in the Gulf of Mexico: modeling variability in growth, mortality, and gear selectivity. Bulletin of Marine Science. Vol. 53(2):912-929.

- Sherman, K., R. Lasker, W. Richards and A.W. Kendall, Jr. 1983. Ichthyoplankton and fish recruitment studies in large marine ecosystems. Mar. Fish. Rev. 45 (10, 11, 12): 1-25.
- Smith, P.E. and S.L. Richardson, eds. 1977. Standard techniques for pelagic fish egg and larva surveys. FAO Fish. Tech. Paper 175. 100 p.
- Southeast Area Monitoring and Assessment Program (SEAMAP) Strategic Plan. 1981. Report to the Gulf States Marine Fisheries Commission. 50 p.
- Strickland, J.D.H. and T.R. Parsons. 1972. A practical handbook of seawater analysis. Ottawa: Fish. Res. Bd. Can. 310 p.
- Stuntz, W.E., C.E. Bryan, K. Savastano, R.S. Waller and P.A. Thompson. 1985. SEAMAP environmental and biological atlas of the Gulf of Mexico, 1982. Gulf States Marine Fisheries Commission. 145 p.
- Thompson, P.A. and N. Bane. 1986a. SEAMAP environmental and biological atlas of the Gulf of Mexico, 1983. Gulf States Marine Fisheries Commission. No. 13. 179 p.
- Thompson, P.A. and N. Bane. 1986b. SEAMAP environmental and biological atlas of the Gulf of Mexico, 1984. Gulf States Marine Fisheries Commission. No. 15. 171 p.
- Thompson, P.A., T. Van Devender and N.J. Sanders, Jr. 1988. SEAMAP environmental and biological atlas of the Gulf of Mexico, 1985. Gulf States Marine Fisheries Commission. No. 17. 338 p.

Table 1. List of SEAMAP survey activities from 1982 to 2012.

	SEAMAP SURVEY ACTIVITIES							
	WINTER	SPRING	SPRING	SUMMER		FALL		
YEAR	SHRIMP/GROUNDFISH	PLANKTON	SHRIMP/GROUNDFISH	SHRIMP/GROUNDFISH	BUTTERFISH	PLANKTON		
1982		APRIL-MAY		JUNE-JULY				
1983		APRIL-MAY		JUNE-JULY				
1984		APRIL-MAY		JUNE-JULY		AUGUST		
1985				JUNE-JULY	JULY-AUGUST	SEPTEMBER		
1986		APRIL-MAY		JUNE-JULY	MAY-JUNE	SEPTEMBER		
1987		APRIL-MAY		JUNE-JULY		SEPTEMBER		
1988		MARCH-MAY		JUNE-JULY		SEPTEMBER-OCTOBER		
1989		APRIL-MAY		JUNE-JULY		SEPTEMBER-OCTOBER		
1990		APRIL-MAY		JUNE-JULY		SEPTEMBER-OCTOBER		
1991		APRIL-MAY		JUNE-JULY		AUGUST-SEPTEMBER		
1992		APRIL-MAY		JUNE-JULY		AUGUST-OCTOBER		
1993		APRIL-MAY		JUNE-JULY		SEPTEMBER-OCTOBER		
1994		APRIL-MAY		JUNE-JULY		SEPTEMBER-OCTOBER		
1995		APRIL-JUNE		JUNE-JULY		SEPTEMBER		
1996		APRIL-JUNE		JUNE-JULY		SEPTEMBER-OCTOBER		
1997		APRIL-JUNE		JUNE-JULY		SEPTEMBER-OCTOBER		
1998		APRIL-JUNE		JUNE-JULY		SEPTEMBER-OCTOBER		
1999		APRIL-MAY		JUNE-JULY		SEPTEMBER-OCTOBER		
2000		APRIL-MAY		JUNE-JULY		SEPTEMBER-OCTOBER		
2001		APRIL-MAY		JUNE-JULY		AUGUST-OCTOBER		
2002		APRIL-MAY		JUNE-JULY		AUGUST-OCTOBER		
2003		MAY		JUNE-JULY		AUGUST-OCTOBER		
2004		APRIL-JUNE		JUNE-JULY		SEPTEMBER		
2005		APRIL-MAY		JUNE-AUGUST				
2006		APRIL-MAY		JUNE-JULY		AUGUST-SEPTEMBER		
2007		MARCH-JUNE		JUNE-AUGUST		AUGUST-SEPTEMBER		
2008		APRIL-JUNE	APRIL	JUNE-AUGUST		SEPTEMBER		
2009	JANUARY-FEBRUARY	APRIL-JUNE	MARCH	JUNE-JULY		AUGUST-SEPTEMBER		
2010	FEBRUARY	APRIL-MAY	APRIL	JUNE-AUGUST		AUGUST-SEPTEMBER		
2011	FEBRUARY	MAY		JUNE-JULY		AUGUST-SEPTEMBER		
2012		APRIL-MAY		MAY-JULY		AUGUST-SEPTEMBER		

Table 1. List of SEAMAP survey activities from 1982 to 2012 (continued).

	SEAMAP SURVEY ACTIVITIES							
	FALL	WINTER	ВОТТОМ	VERTICAL	REEF			
YEAR	SHRIMP/GROUNDFISH	PLANKTON	LONGLINE	LINE	FISH			
1982								
1983		DECEMBER						
1984		DECEMBER						
1985	SEPTEMBER-DECEMBER							
1986	OCTOBER-DECEMBER							
1987	SEPTEMBER-DECEMBER							
1988	OCTOBER-DECEMBER							
1989	OCTOBER-DECEMBER							
1990	OCTOBER-DECEMBER							
1991	SEPTEMBER-DECEMBER							
1992	OCTOBER-DECEMBER				MAY-JUNE			
1993	OCTOBER-DECEMBER	JANFEB.			MAY-JULY, SEPT., NOV.			
1994	OCTOBER-NOVEMBER				MAY-JULY, AUGOCT., DEC.			
1995	OCTOBER-DECEMBER				JAN., JUNE-AUG., DEC.			
1996	OCTOBER-DECEMBER	DECEMBER			JULY, AUGUST, NOVEMBER			
1997	OCTOBER-DECEMBER				JUNE, JULY, AUG., NOV.			
1998	OCTOBER-NOVEMBER				MAY, JULY, AUGUST			
1999	OCTOBER-NOVEMBER				JAN., AUG., OCT., DEC.			
2000	OCTOBER-DECEMBER				OCTOBER, NOVEMBER			
2001	OCTOBER-DECEMBER				MAY, JUNE, OCTOBER			
2002	OCTOBER-DECEMBER				FEBRUARY-MAY, OCTOBER			
2003	OCTOBER-DECEMBER				OCTOBER-NOVEMBER			
2004	OCTOBER-DECEMBER	JANUARY			FEBRUARY-MARCH			
2005	OCTOBER-NOVEMBER				FEBRUARY-JULY, OCTOBER			
2006	OCTOBER-DECEMBER			FEBRUARY-AUGUST				
2007	OCTOBER-DECEMBER			FEBRUARY-MAY				
2008	SEPTEMBER-NOVEMBER	FEBMAR.	MARCH-OCTOBER		FEBRUARY-AUGUST			
2009	SEPTEMBER-NOVEMBER	FEBMAR.	MARCH-OCTOBER		APRIL-AUGUST			
2010	SEPTEMBER-NOVEMBER	FEBMAR.	MARCH-OCTOBER	APRIL-DECEMBER	MARCH-SEPTEMBER			
2011	OCTOBER-NOVEMBER		MARCH-OCTOBER	MAY-DECEMBER	APRIL-JULY			
2012	OCTOBER-NOVEMBER	JANUARY-FEBRURY	MARCH-OCTOBER	MARCH-OCTOBER	JANUARY-AUGUST			

Table 2. 2012 Summer Shrimp/Groundfish Survey species composition list, 493 trawl stations, for those vessels that used either a 40-ft or 20-ft trawl. Species with a total weight of less than 0.0227 kg (0.05 lb) are indicated on the table as 0.0 kg.

			NUMBI		MBER OF	
		TOTAL NUMBER	TOTAL WEIGHT	TOWS WHERE	% FREQUENC	
GENUS/SPECIES	COMMON NAME	CAUGHT	CAUGHT (KG)	CAUGHT	OCCURRENCE	
Finfishes						
IIIISIICS						
Micropogonias undulatus	Atlantic croaker	111400	3450.9	186	37.	
Stenotomus caprinus	longspine porgy	21372	712.2	186	37.	
agodon rhomboides	pinfish	18504	1194.3	199	40	
rachurus lathami	rough scad	17480	404.5	121	24.	
Chloroscombrus chrysurus	Atlantic bumper	15714	488.1	118	23.	
eiostomus xanthurus	spot	14359	1061	121	24	
laemulon aurolineatum	tomtate	5544	427	148	3	
Peprilus burti	gulf butterfish	5121	331.3	139	28	
utjanus synagris	lane snapper	4745	557.3	102	20	
Cynoscion nothus	silver seatrout	4460	193.3	106	21	
Prionotus longispinosus	bigeye searobin	4050	103.2	129	26	
Saurida brasiliensis	largescale lizardfish	3756	17.7	101	20	
Syacium papillosum	dusky flounder	3491	191.2	145	29	
Serranus atrobranchus	blackear bass	2698	32.1	86	17	
Polydactylus octonemus	Atlantic threadfin	2690	92.1	69	1	
Prionotus roseus	bluespotted searobin	2676	42.6	90	18	
arimus fasciatus	banded drum	2487	108.3	73	14	
Synodus foetens	inshore lizardfish	2469	342.4	280	56	
Cynoscion arenarius	sand seatrout	2386	150.1	109	22	
Orthopristis chrysoptera	pigfish	2368	197	67	13	
richiurus lepturus	Atlantic cutlassfish	2349	72.9	90	18	
Rhomboplites aurorubens	vermilion snapper	2306	109.7	89	18	
Ipeneus parvus	dwarf goatfish	2207	39	109	22	
yacium gunteri	shoal flounder	2188	49.9	136	27	
Calamus proridens	littlehead porgy	2167	458.5	96	19	
Steindachneria argentea	luminous hake	2148	14.6	3	0	
Pristipomoides aquilonaris	wenchman	2089	106.8	96	19	

Table 2. Species composition list (continued)

		TOTAL NUMBER	TOTAL WEIGHT	TOWS WHERE	% FREQUENC
GENUS/SPECIES	COMMON NAME	CAUGHT	CAUGHT (KG)	CAUGHT	OCCURRENC
Diplectrum formosum	sand perch	2001	158.4	163	33.
Eucinostomus gula	silver jenny	1999	79.3	51	10.3
Synodus poeyi	offshore lizardfish	1805	11.4	88	17.
łaemulon plumierii	white grunt	1691	260.1	51	10.
Scorpaena calcarata	smoothhead scorpionfish	1639	26.1	57	11.
Centropristis philadelphica	rock sea bass	1469	74.2	122	24.
Decapterus punctatus	round scad	1309	22.1	60	12.
Calamus arctifrons	grass porgy	1256	88.4	24	4.
richopsetta ventralis	sash flounder	1207	29	49	9.
Brevoortia patronus	gulf menhaden	1160	71.2	38	7.
Synodus intermedius	sand diver	1076	73.7	124	25.
lalieutichthys aculeatus	pancake batfish	1040	7	93	18.
elene setapinnis	Atlantic moonfish	1016	80.5	101	20.
tephanolepis hispida		1004	40.1	99	20.
rionotus stearnsi	shortwing searobin	885	8.5	60	12.
corpaena brasiliensis	barbfish	883	43.2	88	17.
Centropristis ocyurus	bank sea bass	842	34.9	87	17.
Opisthonema oglinum	Atlantic thread herring	786	59	45	9.
utjanus campechanus	red snapper	688	193.7	134	27.
nchoa hepsetus	striped anchovy	681	11.9	36	7.
stellifer lanceolatus	star drum	648	13.3	36	7.
rionotus paralatus	Mexican searobin	635	18	48	9.
rachinocephalus myops	snakefish	607	37.3	81	16.
stephanolepis hispida	planehead filefish	557	13	85	17.
larengula jaguana	scaled sardine	511	27.1	46	9.
quetus lanceolatus	jackknife fish	509	43.2	81	16.
licholsina usta	emerald parrotfish	491	27	63	12.
ucinostomus	mojarras	437	16.3	7	1.
ucinostomus argenteus	spotfin mojarra	432	15.2	18	3.
canthostracion quadricornis		427	66	77	15.

Table 2. Species composition list (continued) NUMBER OF **TOTAL NUMBER TOTAL WEIGHT TOWS WHERE** % FREQUENCY **CAUGHT CAUGHT** OCCURRENCE **GENUS/SPECIES** COMMON NAME CAUGHT (KG) Monacanthus ciliatus fringed filefish 381 5.7 69 14 380 4.3 39 7.9 Citharichthys spilopterus bay whiff 7.1 Chaetodipterus faber Atlantic spadefish 357 14.6 35 Serranus notospilus saddle bass 356 8.0 18 3.7 Sphoeroides spengleri bandtail puffer 350 12 61 12.4 Mullus auratus red goatfish 338 18.6 51 10.3 4.7 Etropus crossotus fringed flounder 328 55 11.2 324 8.7 40 8.1 Serranus phoebe tattler Sphoeroides dorsalis marbled puffer 304 8.3 58 11.8 Ophidion holbrookii 294 22.7 46 9.3 bank cusk-eel Bellator militaris horned searobin 292 4.7 29 5.9 Bothus robinsi twospot flounder 285 6.8 57 11.6 26 Sardinella aurita Spanish sardine 278 15.7 5.3 13.2 Porichthys plectrodon Atlantic midshipman 277 6.6 65 254 44 8.9 Diplectrum bivittatum dwarf sand perch 5.3 44.4 32 6.5 252 Pagrus pagrus red porgy Cyclopsetta chittendeni Mexican flounder 251 38.6 66 13.4 Lepophidium brevibarbe blackedge cusk-eel 244 10.9 41 8.3 239 29 5.9 Lepophidium jeannae mottled cusk-eel 10.6 225 26 5.3 Prionotus scitulus leopard searobin 10.1 224 10.7 28 5.7 Eucinostomus harengulus tidewater mojarra Lagocephalus laevigatus smooth puffer 220 12.1 64 13 212 26.4 38 7.7 Ariopsis felis hardhead catfish Sphoeroides parvus least puffer 201 1.6 41 8.3 171 Menticirrhus americanus southern kingfish 30.4 30 6.1 87 Aluterus schoepfii orange filefish 170 61 12.4 Lutjanus griseus grey snapper 164 58.4 37 7.5 Prionotus rubio blackwing searobin 162 28.9 25 5.1 Hemipteronotus novacula pearly razorfish 160 9.3 30 6.1 Hemanthias vivanus red barbier 143 2.9 1 0.2 Epinephelus morio red grouper 142 112.1 56 11.4

Table 2. Species composition list (continued) NUMBER OF **TOTAL NUMBER TOTAL WEIGHT TOWS WHERE** % FREQUENCY **GENUS/SPECIES CAUGHT** OCCURRENCE COMMON NAME CAUGHT (KG) **CAUGHT** Scorpaena agassizii longfin scorpionfish 140 4.1 8 1.6 138 5 26 Prionotus martis barred searobin 5.3 Lachnolaimus maximus hogfish 136 35.8 29 5.9 Pareques umbrosus cubbyu 132 8.5 40 8.1 Balistes capriscus gray triggerfish 127 29.5 57 11.6 Calamus nodosus knobbed porgy 125 25 22 4.5 Chromis enchrysura yellowtail reeffish 124 2.4 14 2.8 120 9 Dorosoma petenense threadfin shad 11.6 1.8 Neomerinthe hemingwayi 12.7 2.2 spinycheek scorpionfish 119 11 119 5.5 37 7.5 Ancylopsetta dilecta three-eye flounder roughback batfish 115 2.9 48 9.7 Ogcocephalus parvus Ogcocephalus declivirostris slantbrow batfish 105 1.4 30 6.1 Acanthostracion quadricornis scrawled cowfish 104 18.9 28 5.7 20 Urophycis floridana 98 6.8 southern hake 4.1 spotfin butterflyfish 96 7.6 6.9 Chaetodon ocellatus 34 96 9.1 Ancylopsetta ommata ocellated flounder 14.8 45 Apogon pseudomaculatus twospot cardinalfish 95 0.7 24 4.9 3.5 29 5.9 Kathetostoma albigutta lancer stargazer 89 88 0.2 10 2 Anchoa mitchilli bay anchovy 3.6 34 6.9 Prionotus ophryas bandtail searobin 84 22 4.5 Prionotus tribulus bighead searobin 81 4.1 78 0 4 8.0 Cynoscion spp. seatrouts 77 22.2 34 6.9 Chilomycterus schoepfii striped burrfish Rhizoprionodon terraenovae Atlantic sharpnose shark 76 55.2 36 7.3 5.9 Antennarius radiosus singlespot frogfish 75 0.9 29 75 blackcheek tonguefish 1.8 30 6.1 Symphurus plagiusa Haemulon striatum striped grunt 69 2.7 5 1 Astrapogon alutus bronze cardinalfish 65 0.2 17 3.4 Selene vomer lookdown 64 2.1 20 4.1 Apogon affinis bigtooth cardinalfish 64 0.4 12 2.4 Seriola dumerili greater amberjack 63 9.5 14 2.8

Table 2. Species composition list (continued) NUMBER OF **TOTAL NUMBER TOTAL WEIGHT TOWS WHERE** % FREQUENCY **CAUGHT CAUGHT** OCCURRENCE **GENUS/SPECIES** COMMON NAME CAUGHT (KG) Selar crumenophthalmus bigeye scad 62 3.5 17 3.4 61 2.3 17 3.4 Prionotus alatus spiny searobin Peprilus paru harvestfish 61 5.4 11 2.2 Paralichthys lethostigma southern flounder 59 21.1 22 4.5 Apogon aurolineatus bridle cardinalfish 59 0.1 14 2.8 Ocyurus chrysurus yellowtail snapper 58 7.7 12 2.4 Bollmannia communis ragged goby 55 0.2 9 1.8 Calamus leucosteus 23.5 2.2 whitebone porgy 54 11 2.8 2.8 Ophidion beani longnose cusk-eel 51 14 23.1 23 Raja eglanteria clearnose skate 51 4.7 Pterois volitans 50 6.2 25 5.1 lion fish 2 Scorpaena spp. scorpionfishes 48 1 0.2 18.2 32 roundel skate 6.5 Raja texana 44 6 13 2.6 Caulolatilus intermedius anchor tilefish 44 27 15 5.5 Paralichthys albigutta gulf flounder 44 3.5 27 5.5 Gymnothorax saxicola honeycomb moray 44 Symphurus diomedeanus 43 1.3 17 3.4 spottedfin tonguefish 2.8 Citharichthys macrops spotted whiff 42 1.5 14 2.8 2.8 Rhynchoconger flavus 41 14 yellow conger 2 6 Syacium micrurum channel flounder 41 1.2 38 0.6 8 1.6 gray flounder Etropus rimosus Cyclopsetta fimbriata spotfin flounder 37 4.2 25 5.1 37 6 10 2 Centropristis striatus black sea bass 37 3 Decapterus macarellus mackeral scad 2.2 0.6 Apogon quadrisquamatus sawcheek cardinalfish 36 0.1 11 2.2 35 3.7 Mycteroperca phenax 8.4 18 scamp Opsanus pardus leopard toadfish 34 0.6 16 3.2 Chaetodon sedentarius reef butterflyfish 34 2.2 10 2 Rypticus maculatus whitespotted soapfish 33 1.2 18 3.7 lined seahorse 33 0.3 26 5.3 Hippocampus erectus Bregmaceros atlanticus antenna codlet 33 0 8 1.6

Table 2. Species composition list (continued) NUMBER OF **TOTAL NUMBER TOTAL WEIGHT TOWS WHERE** % FREQUENCY **GENUS/SPECIES CAUGHT CAUGHT** OCCURRENCE COMMON NAME CAUGHT (KG) Holacanthus bermudensis blue angelfish 33 12.6 12 2.4 32 4.2 3 0.6 Seriola rivoliana almaco jack Ophidion josephi crested cusk-eel 31 1.4 6 1.2 Gastropsetta frontalis 2 shrimp flounder 31 15 3 Mustelus canis smooth dogfish 30 52 19 3.9 Pareques iwamotoi blackbar drum 30 1.8 9 1.8 12 Priacanthus arenatus bigeye 28 4.1 2.4 20 whitefin sharksucker 28 Echeneis neucratoides 11.5 4.1 Ogcocephalus pantostictus 28 5.3 9 spotted batfish 1.8 28 0.2 12 2.4 Hoplunnis macrura freckled pike-conger 27 0.3 10 2 Hypoplectrus 27 2.8 Brotula barbata bearded brotula 1.4 14 25 2 Sphyraena guachancho 3.9 10 guaguanche 7 Xyrichtys martinicensis rosy razorfish 24 1.1 1.4 1.2 9 Bairdiella chrysoura silver perch 24 1.8 23 2.8 7 Sphyraena borealis northern sennet 1.4 Engyophrys senta spiny flounder 23 0.1 13 2.6 22 3.5 3.7 Antennarius ocellatus ocellated frogfish 18 22 0.1 5 Phaeoptyx xenus sponge cardinalfish 1 22 0.6 5 Symphurus urospilus spottail tonguefish 1 21 3.5 14 2.8 Pristigenys alta short bigeye Symphurus civitatium offshore tonguefish 21 0.7 5 1 Etrumeus teres 21 0.3 8.0 round herring 4 20 Phaeoptyx pigmentaria dusky cardinalfish 0.2 7 1.4 2 Serranus tortugarum chalk bass 19 0.1 0.4 9 Urophycis cirrata gulf hake 19 0.4 1.8 Ogcocephalus corniger longnose batfish 19 0.5 12 2.4 Diplodus holbrooki spottail pinfish 19 1.6 2 0.4 Carcharhinus acronotus blacknose shark 19 45.5 15 3 Echeneis naucrates sharksucker 18 9 6 1.2 2 Narcine brasiliensis lesser electric ray 18 7.3 10

Table 2. Species composition list (continued) NUMBER OF **TOTAL NUMBER TOTAL WEIGHT TOWS WHERE** % FREQUENCY **GENUS/SPECIES CAUGHT CAUGHT** OCCURRENCE COMMON NAME CAUGHT (KG) Citharichthys gymnorhinus anglefin whiff 17 0 4 8.0 16 5 9 Paralichthys squamilentus broad flounder 1.8 Aluterus heudelotii dotterel filefish 16 3.4 11 2.2 Gymnachirus texae fringed sole 15 0.3 8 1.6 Ophidion selenops mooneye cusk-eel 15 0 9 1.8 Calamus penna sheepshead porgy 15 2.8 5 1 Scomber japonicus chub mackerel 15 0.3 8.0 blotched cusk-eel 8.0 Ophidion grayi 14 6 1.2 Pseudupeneus maculatus 0.3 spotted goatfish 14 9 1.8 0.2 8.0 Etropus cyclosquamus shelf flounder 14 Bellator egretta 0.1 2 0.4 streamer searobin 14 Caranx crysos blue runner 13 1.9 8 1.6 Pontinus longispinis longspine scorpionfish 13 0.1 8.0 freckled soapfish 13 0.1 5 Rypticus bistrispinus 1 12 8.0 Pomatomus saltatrix bluefish 1.5 12 8.0 Otophidium omostigmum 0.1 polka-dot cusk-eel Ogcocephalus cubifrons 12 4.3 12 2.4 Halichoeres bivittatus slippery dick 11 0.6 0.2 0.2 2 0.4 Microspathodon chrysurus yellowtail damselfish 11 10 8.4 7 Calamus bajonado jolthead porgy 1.4 5 Physiculus fulvus metallic codling 10 0.1 Pomacanthus arcuatus gray angelfish 10 4 6 1.2 10 3.2 8.0 Paralichthys dentatus fluke 4 Rhinobatos lentiginosus Atlantic guitarfish 10 4.3 6 1.2 Trachinotus carolinus Florida pompano 9 3.2 3 0.6 Gymnachirus melas naked sole 9 0.3 6 1.2 Bagre marinus gafftopsail catfish 9 2.6 6 1.2 Serranus subligarius belted sandfish 0 6 1.2 Antennarius striatus striated frogfish 8 0.1 8.0 4 Saurida normani shortjaw lizardfish 8 0.5 8.0 4 spotted hake 8 0.5 2 0.4 Urophycis regia

Table 2. Species composition list (continued) NUMBER OF **TOTAL NUMBER TOTAL WEIGHT TOWS WHERE** % FREQUENCY **GENUS/SPECIES CAUGHT CAUGHT** OCCURRENCE COMMON NAME CAUGHT (KG) Bairdiella batabana blue croaker 8 0.5 3 0.6 0.3 3 0.6 Holocentrus bullisi deepwater squirrelfish 8 Ophichthus gomesii shrimp eel 0.7 5 1 Squatina dumeril Atlantic angel shark 13.5 6 1.2 Gobiesox strumosus skilletfish 0 5 1 Seriola zonata banded rudderfish 0.3 3 0.6 2 Caranx hippos crevalle jack 1.5 0.4 Peristedion gracile slender searobin 7 0 2 0.4 scrawled filefish 2.1 8.0 Aluterus scriptus 7 0.1 2 0.4 Schultzea beta school bass Calamus calamus 6 3.2 2 0.4 saucereye porgy Pomacentrus variabilis cocoa damselfish 6 0.1 5 1 Microgobius thalassiunus 6 0 0.2 smooth butterfly ray 6 10 6 1.2 Gymnura micrura Sphoeroides nephelus 0.5 8.0 southern puffer 6 2.5 Urolophus jamaicencis 2 0.4 Dasyatis americana southern stingray 5.2 8.0 Hoplunnis diomedianus blacktail pike-conger 5 0 Echiophis intertinctus 5 1 5 spotted spoon-nose eel 5 5 Scomberomorus cavalla king mackerel 1.8 1 5 8.0 Mycteroperca microlepis 6.4 gag Neobythites gilli cusk-eel 5 0 8.0 5 0 3 0.6 Parablennius marmoreus seaweed blenny Gymnothorax kolpos blacktail moray 5 2.3 5 1 2.5 Mustelus norrisi Florida smoothhound 5 5 5 Serraniculus pumilio pygmy sea bass 0 4 8.0 Canthigaster rostratus 5 0 3 0.6 Bathyanthias mexicanus yellowtail bass 5 0.1 2 0.4 Caranx ruber bar jack 5 0.1 2 0.4 Scomberomorus maculatus Spanish mackerel 5 0.9 3 0.6 Bothus ocellatus eyed flounder 5 0.1 2 0.4

Table 2. Species composition list (continued) NUMBER OF **TOTAL NUMBER TOTAL WEIGHT TOWS WHERE** % FREQUENCY **GENUS/SPECIES CAUGHT CAUGHT** OCCURRENCE COMMON NAME CAUGHT (KG) Ogcocephalus cubifrons polka-dot batfish 4 0.9 3 0.6 0.5 2 0.4 Hemicaranx amblyrhynchus bluntnose jack 4 Peprilus paru harvestfish 0.7 3 0.6 Sphoeroides common puffers 0.4 0.2 Sphyrna tiburo bonnethead 6.5 8.0 Diplectrum 0 3 0.6 perch Pagrus spp. pagrus spp. 0 0.2 0.2 0.2 Oligoplites saurus leatherjack Anisotremus virginicus 3 0.2 porkfish 0.4 3 0.2 Apsilus dentatus black snapper 0.9 Evermannichthys spongicola 3 0 2 0.4 sponge goby 2 Pareques 3 0.1 0.4 0 2 Lonchopisthus micrognathus swordtail jawfish 3 0.4 3 2 Caranx bartholomaei 0.1 0.4 yellow jack 3 0.1 0.2 Conodon nobilis barred grunt 2 Mulloidichthys martinicus yellow goatfish 3 0.1 0.4 unicorn filefish 3 5.8 2 0.4 Aluterus monoceros 3 Prognathodes aya bank butterflyfish 0.1 0.2 3 1.6 3 0.6 Acanthostracion polygonius honeycomb cowfish 3 0.2 2 0.4 Decodon puellaris red hogfish 3 0 0.2 hakes Urophycis spp. Gymnothorax nigromarginatus blackedge moray 2 0.2 2 0.4 Caulolatilus microps 2 0.3 0.2 blueline tilefish Mustelus smooth hound sharks 2 1.1 0.2 Hemanthias leptus longtail bass 2 0 0.2 2 Oxyporhamphus micropterus smallwing flyingfish 0 0.2 Decapterus tabl redtail scad 2 0 0.2 Seriola fasciata lesser amberjack 2 0.1 0.2 Acanthurus chirurgus doctorfish 2 0.6 2 0.4 Echiophis punctifer 2 0 0.2 snapper eel Rhinoptera bonasus 2 16.3 2 0.4 cownose ray

Table 2. Species composition list (continued) NUMBER OF **TOTAL NUMBER TOTAL WEIGHT TOWS WHERE** % FREQUENCY **GENUS/SPECIES CAUGHT CAUGHT** OCCURRENCE COMMON NAME CAUGHT (KG) Pomacanthus paru French angelfish 2 0 1 0.2 2 0 0.2 Hypoplectrus unicolor butter hamlet 1 Chaenopsis ocellata bluethroat pikeblenny 2 0.1 0.2 Hemipteronotus splendens green razorfish 2 0 0.2 Conger oceanicus 2 0.1 0.2 conger eel Citharichthys dinoceros spined whiff 2 0 0.2 2 2 Caulolatilus cyanops blackline tilefish 0.1 0.4 Dactylopterus volitans 2 0.2 flying gurnard 1.1 2 Calamus 0 0.2 2 Carcharhinus limbatus blacktip shark 2.1 2 0.4 Halichoeres bathyphilus 2 0 2 0.4 greenband wrasse 2 2 Gobiosoma xanthiprora yellowprow goby 0 0.4 2 2 Epinephelus niveatus 0.1 0.4 snowy grouper 2 2 spotted driftfish 0.4 0.4 Ariomma regulus 2 2 0 0.4 bluelip parrotfish Cryptotomus roseus 2 0.2 Menticirrhus littoralis gulf kingfish 0.3 Urophycis earlli Carolina hake 2 0.1 0.2 2 21.1 2 Myliobatis freminvillii Bullnose ray 0.4 2 1.3 0.2 Dipturus olseni spreadfin skate 2 0 2 0.4 Starksia ocellata checkered blenny 0 0.2 Hippocampus reidi longsnout seahorse Corythoichthys albirostris 0 0.2 Canthigaster jamestyleri 0 0.2 Pomacentrus leucostictus 0.2 beaugregory 0 0.2 Stephanolepis setifer pygmy filefish 0.1 0.2 Paraconger caudilimbatus margintail conger 0.2 Epinephelus flavolimbatus yellowedge grouper 0 0.2 Citharichthys cornutus horned whiff 0.1 0.2 Lutjanus analis 8.8 0.2 mutton snapper Syngnathus Iouisianae chain pipefish 1 0 0.2 **Xyrichtys** 0.1 0.2

Table 2. Species composition list (continued) NUMBER OF **TOTAL NUMBER TOTAL WEIGHT** % FREQUENCY **TOWS WHERE GENUS/SPECIES** COMMON NAME **CAUGHT CAUGHT** OCCURRENCE CAUGHT (KG) Gobiidae gobies 1 0 1 0.2 0 1 0.2 Blenniidae blennies 1 Trinectes maculatus hogchoker 0 0.2 Cypselurus heterurus 0 0.2 Achirus lineatus lined sole 0 0.2 Ophichthus puncticeps palespotted eel 0.1 0.2 Umbrina coroides sand drum 0.1 0.2 0.2 Histrio histrio sargassum frogfish 0 Anchoa lyolepis dusky anchovy 0 0.2 loglossus calliurus 0 0.2 blue goby Paraclinus marmoratus marbled blenny 0 0.2 250 0.2 Dasyatis centroura clam cracker 0 0.2 Aluterus filefishes Hyporthodus flavolimbatus 0.1 0.2 Rachycentron canadum 0.2 cobia 1.8 0 0.2 Opsanus beta gulf toadfish Cephalopholis cruentata 0.1 0.2 graysby 0.1 0.2 Alosa chrysochloris blue herring 0 0.2 cardinalfishes Apogon spp. 0 0.2 Sargocentron Archosargus probatocephalus sheepshead 0.7 0.2 Symphurus spp. tonguefishes 0 0.2 Holocentrus adscensionis squirrelfish 0.5 0.2 0.2 Scorpaena plumieri spotted scorpionfish 0.2 0 0.2 Lepophidium spp. cusk-eels 0.2 loglossus 0 Synagrops spinosa 0 0.2 Ophichthus rex king snake eel 8.0 0.2 Stephanolepis setifer pygmy filefish 0 0.2 Lactophrys trigonus trunkfish 0.6 0.2 Unid.fish fishes 0 0.2

		TOTAL NUMBER	TOTAL WEIGHT	TOWS WHERE	% FREQUENCY
GENUS/SPECIES	COMMON NAME	CAUGHT	CAUGHT (KG)	CAUGHT	OCCURRENCE
Gymnura altavela	spiny butterfly ray	1	2.7	1	0.2
Hemiramphus balao	balao	1	0	1	0.2
Odontoscion dentex	reef croaker	1	0.1	1	0.2
Gordiichthys		1	0	1	0.2
<u>Crustaceans</u>					
Farfantepenaeus aztecus	brown shrimp	42506	672.9	224	45.4
Callinectes similis	lesser blue crab	12678	128.9	159	32.3
Rimapenaeus similis	roughback shrimp	7368	39	85	17.2
Squilla empusa	mantis shrimp	4469	48.4	111	22.5
Litopenaeus setiferus	white shrimp	2782	114.1	80	16.2
Portunus spinicarpus	longspine swimming crab	2464	11	135	27.4
Farfantepenaeus duorarum	pink shrimp	2136	38	85	17.2
Sicyonia brevirostris	brown rock shrimp	2068	25	102	20.7
Solenocera vioscai	humpback shrimp	1695	7.4	44	8.9
Squilla chydaea	mantis shrimp	1045	6.5	54	11
Xiphopenaeus kroyeri	seabob	688	5.1	21	4.3
Portunus gibbesii	irridescent swimming crab	596	3.4	93	18.9
Anasimus latus	stilt spider crab	530	2.5	68	13.8
Sicyonia dorsalis	lesser rock shrimp	530	0.9	29	5.9
Rimapenaeus constrictus	roughneck shrimp	470	1.2	19	3.9
Solenocera atlantidis	dwarf humpback shrimp	402	0.6	32	6.5
Leiolambrus nitidus	white elbow crab	368	0.7	32	6.5
Metapenaeopsis goodei	Caribbean velvet shrimp	358	0.5	37	7.5
Parapenaeus politus	deepwater rose shrimp	265	0.4	11	2.2
Portunus spinimanus	blotched swimming crab	258	6	70	14.2
Stenorhynchus seticornis	yellowline arrow crab	247	0.5	77	15.6
Calappa sulcata	yellow box crab	172	33.5	56	11.4
Callinectes sapidus	blue crab	158	30.8	47	9.5
Mithrax hispidus	coral clinging crab	145	0.6	21	4.3

Table 2. Species composition list (continued) NUMBER OF **TOTAL NUMBER TOTAL WEIGHT TOWS WHERE** % FREQUENCY **GENUS/SPECIES CAUGHT CAUGHT** OCCURRENCE COMMON NAME CAUGHT (KG) Cryptodromiopsis antillensis hairy sponge crab 136 0.5 52 10.5 120 0.5 32 6.5 Scyllarus chacei chace slipper lobster Plesionika longicauda pandalid shrimp 109 0.3 9 1.8 Munida 103 0 5 1 Stenocionops furcatus furcatus furcate crab 98 2.7 37 7.5 Raninoides Iouisianensis gulf frog crab 97 8.0 29 5.9 Portunus ordwayii 23 87 0.5 4.7 Scyllarides nodifer ridged slipper lobster 73 34 6.9 24.4 Mithrax pleuracanthus 55 0.1 18 3.7 shaggy clinging crab 55 0.3 18 3.7 Euphrosynoplax clausa craggy bathyal crab Portunus sayi 52 0.2 18 3.7 sargassum swimming crab 0 3.2 Synalpheus 51 16 Platylambrus granulata 28 bladetooth elbow crab 50 0.1 5.7 Macrocoeloma trispinosum 48 0.4 24 4.9 spongy decorator crab 47 0.5 16 3.2 Pseudorhombila quadridentata flecked squareback crab 3 Pilumnus savi spineback hairy crab 45 0.1 15 Hepatus epheliticus calico crab 40 1.1 16 3.2 2.2 Libinia emarginata portly spider crab 38 1.9 11 32 0 11 2.2 Munida irrasa 29 0.1 21 4.3 Podochela sidneyi shortfinger neck crab 25 0 6 1.2 Porcellana sayana spotted porcelain crab Arenaeus cribrarius speckled swimming crab 24 8.0 3 0.6 23 0 14 2.8 Mithrax forceps red-ridged clinging crab 23 3.4 Persephona crinita pink purse crab 0.1 17 22 2.2 Metoporhaphis calcarata false arrow crab 0 11 2 21 0 10 Lysmata Paguristes spp. hermit crabs 21 0 14 2.8 Paguristes tortugae bandeye hermit 21 0 9 1.8 Ovalipes floridanus Florida lady crab 20 0.4 8 1.6 Paguristes sericeus blue-eyed hermit 19 0 14 2.8 7 Stenocionops furcatus coelatus spider crab 19 0.1 1.4

Table 2. Species composition list (continued) NUMBER OF **TOTAL NUMBER TOTAL WEIGHT TOWS WHERE** % FREQUENCY **GENUS/SPECIES CAUGHT CAUGHT** OCCURRENCE COMMON NAME CAUGHT (KG) Sicyonia burkenroadi spiny rock shrimp 18 0 6 1.2 18 0.1 5 Myropsis quinquespinosa fivespine purse crab 1 7 Pagurus bullisi hermit crab 18 0.1 1.4 Libinia dubia longnose spider crab 18 0.1 15 3 Pseudomedaeus agassizii rough rubble crab 17 0.1 3 0.6 Petrolisthes galathinus banded porcelain crab 17 0 5 1 17 Synalpheus longicarpus 0 4 8.0 2 Squilla rugosa 0.1 10 14 2 Parthenope agonus 0 10 14 Scyllarus depressus scaled slipper lobster 13 0 8 1.6 Calappa flammea flame box crab 13 3.1 9 1.8 Pagurus pollicaris flatclaw hermit crab 12 0.1 1.4 Collodes robustus spider crab 12 0.1 3 0.6 12 0 Paguristes triangulatus hermit crab 6 1.2 0.1 3 0.6 Acanthocarpus alexandri gladiator box crab 11 2 Persephona mediterranea mottled purse crab 11 0.1 10 Alpheus floridanus sand snapping shrimp 10 0 5 3 0.6 Megalobrachium 10 0 9 0 8.0 Leiolambrus nitidus white elbow crab 4 9 5 Dardanus fucosus bareye hermit 0 1 0 3 0.6 Mesopenaeus tropicalis salmon shrimp 9 Alpheidae snapping shrimps 0 8.0 Palicus alternata 0 6 1.2 Stenocionops spinimanus prickly spider crab 0.2 8.0 7 Gonodactylidae gonodactylid mantis shrimps 8 0 1.4 Porcellana sigsbeiana 3 striped porcelain crab 8 0 0.6 Dardanus insignis red brocade hermit 0 6 1.2 Petrochirus diogenes giant hermit crab 0.2 5 1 Iliacantha subglobosa longfinger purse crab 7 0 6 1.2 7 Sicyonia typica kinglet rock shrimp 0 6 1.2 7 Plesionika 0 0.2

Table 2. Species composition list (continued) NUMBER OF **TOTAL NUMBER TOTAL WEIGHT TOWS WHERE** % FREQUENCY CAUGHT **CAUGHT** OCCURRENCE **GENUS/SPECIES** COMMON NAME CAUGHT (KG) Macrocoeloma camptocerum Florida decorator crab 6 0 4 8.0 0 Sicyonia spp. rock shrimps 6 0.2 Hypoconcha arcuata granulate shellback crab 5 0 8.0 Ethusa microphthalma broadback sumo crab 5 0 3 0.6 Hypoconcha spinosissima spiny shellback crab 0 0.6 0 0.2 Stenocionops Tozeuma serratum serrate arrow shrimp 0 8.0 Macrocoeloma eutheca 0 2 0.4 0.2 Persephona 0 8.0 Lobopilumnus agassizii areolated hairy crab 0 2 0.4 Iliacantha liodactylus purse crab 0 Speocarcinus lobatus gulf squareback crab 3 0 3 0.6 3 3 0.6 Manucomplanus ungulatus 0 3 2 0.4 Lironeca redmanni 0 2 red sea crab 0 0.4 Danielum ixbauchac 3 3 0.6 Alpheus snapping shirmps 0 Pagurus longicarpus 0 0.4 long-armed hermit crab 2 Anchistioides antiguensis 3 0 0.4 2 Majidae spider crabs 0 0.4 2 Podochela riisei longfinger neck crab 3 0 0.4 3 0.6 Acanthilia intermedia 0 granulose purse crab Gonodactylus bredini 3 0 3 0.6 2 0.4 Squilla deceptrix 0 Parthenope pourtalesii spinous elbow crab 3 0 3 0.6 Pilumnus floridanus plumed hairy crab 0 3 0.6 Palaemonetes 2 0 2 0.4 Galathea rostrata 2 0 2 0.4 Synalpheus minus minor snapping shrimp 2 0 2 0.4 2 0 2 0.4 Aega Lysiosquilla scabricauda mantis shrimp 2 0 0.2 eroded mud crab 2 0.1 2 0.4 Glyptoxanthus erosus

Table 2. Species composition list (continued) NUMBER OF **TOTAL NUMBER TOTAL WEIGHT TOWS WHERE** % FREQUENCY **GENUS/SPECIES CAUGHT CAUGHT** OCCURRENCE COMMON NAME CAUGHT (KG) Pyromaia cuspidata dartnose pear crab 2 0 1 0.2 0 2 0.2 Palicus faxoni finned stilt crab 1 Phimochirus holthuisi red-striped hermit 2 0 2 0.4 Cymothoidae 2 0 0.2 Tyche emarginata fourhorn crab 2 0 2 0.4 Osachila semilevis thinlip jewelbox crab 2 0 0.2 Palicus 2 0 0.2 Porcellanidae 2 0.2 porcelain crabs 0 Mithrax acuticornis 2 2 sharphorn clinging crab 0 0.4 2 0.7 2 Menippe mercenaria Florida stone crab 0.4 Gibbesia neglecta 2 0 2 0.4 mantis shrimp 2 Mithrax 2 0 0.4 Squilla spp. mantis shrimps 0 0.2 0 0.2 Munida forceps squat lobster 0.2 Plesionika acanthonotus lesser striped shrimp 0 Sicyonia laevigata rock shrimp 0 0.2 Speocarcinus carolinensis Carolinian squareback crab 0 0.2 Axiopsis hirsutimana lobster shrimps 0 0.2 0.2 Parthenope serrata sawtooth elbow crab 0 0.2 Pseudorhombila 0 0.2 Calocaris hirsutimana 0 Gnathophyllidae bumblebee shrimps 0 0.2 0 0.2 Paguridae right-handed hermit crabs Diogenidae left-handed hermit crabs 0 0.2 Stenopus scutellatus golden coral shrimp 0 0.2 Periclimenes americanus American grass shrimp 0 0.2 Cronius ruber blackpoint sculling crab 0 0.2 Ethusa 0 0.2 Ranilia 0 0.2 Albunea gibbesii surf mole crab 0 0.2 Gonodactylus torus 0 0.2

Table 2. Species composition list (continued) NUMBER OF **TOTAL NUMBER** % FREQUENCY **TOTAL WEIGHT TOWS WHERE GENUS/SPECIES CAUGHT CAUGHT** OCCURRENCE COMMON NAME CAUGHT (KG) Collodes trispinosus 1 0 1 0.2 0 1 0.2 Sicyonia stimpsoni eyespot rock shrimp 1 Stenopus 0 0.2 Xanthidae mud crabs 0 0.2 Munida pusilla 0 0.2 Alpheus armatus brown snapping shrimp 0 0.2 Macrocoeloma 0 0.2 0.2 Isopoda isopods 0 Inachidae 0 0.2 Townsend snapping shrimp Synalpheus townsendi 0.2 0 Alpheus formosus striped snapping shrimp 0 0.2 0.2 Parthenope fraterculus rough elbow crab 0 0.2 Synalpheus fritzmuelleri speckled snapping shrimp 0 0.2 Tumidotheres maculatus squatter pea crab 0 Pilumnus dasypodus 0.2 shortspine hairy crab 0 0.2 Stomatopoda mantis shrimps 0 Hippolytidae 0 0.2 0.2 Leucosiidae purse crabs 0 Podochela lamelligera 0 0.2 neck crab Scalpellum 0.2 0 Thor 0 0.2 Nibilia antilocapra shorthorn spiny crab 0 0.2 **Others** 13006 165.6 240 Loligo plei arrow squid 48.7 Amusium papyraceum paper scallop 9238 90.1 80 16.2 Loligo pealeii longfin squid 4011 50.1 80 16.2 Lolliguncula brevis Atlantic brief squid 858 10.3 87 17.6 Loligo spp. squids 664 7.4 22 4.5 Argopecten gibbus calico scallop 409 4.2 24 4.9

Table 2. Species composition list (continued) NUMBER OF **TOTAL NUMBER TOTAL WEIGHT TOWS WHERE** % FREQUENCY **GENUS/SPECIES CAUGHT CAUGHT** OCCURRENCE COMMON NAME CAUGHT (KG) Pitar cordatus Schwengel's pitar 194 4.7 23 4.7 158 1.5 22 4.5 Polystira albida white giant turris 2 Evola bivalves 111 4 8.0 Euvola raveneli Ravenel's scallop 94 0.3 21 4.3 Sconsia striata royal bonnet 43 8.0 8 1.6 Anadara baughmani Baughman's ark 36 0.5 6 1.2 0.7 3 Aequipecten glyptus red-ribbed scallop 34 0.6 common Atlantic octopus 32 2.6 3.2 Octopus vulgaris 16 2 Lirophora clenchi 0.2 0.4 Clench venus 24 13 Cantharus cancellarius 24 0.1 2.6 cancellate cantharus Astrea americana 22 0.2 11 2.2 7 Pteria colymbus Atlantic wing-oyster 15 0.3 1.4 Anadara ovalis blood ark 0.1 9 1.8 14 Murex cabritti 0.1 8.0 14 0 8.0 Octopus joubini 12 Atlantic pygmy octopus Conus austini 0.1 cone shell 11 5 1 Tonna galea giant tun 10 1.6 3 0.6 9 7 Arca zebra turkey wing 0.2 1.4 Turbo castaneus 9 0 2 0.4 Bulla striata 0 3 0.6 striate bubble 8 1.2 5 Aplysia morio sooty seahare 8 Ficus communis Atlantic figsnail 8 0.3 4 8.0 8 0.1 8.0 Anadara transversa transverse ark 4 Distorsio clathrata Atlantic distorsio 0.1 5 1 0.5 Nodipecten 1.4 2 Macoma pulleyi delta macoma 6 0 0.4 Hexaplex fulvescens giant eastern murex 6 0.4 3 0.6 Dendostrea 6 0 5 1 Semirossia tenera lesser shining bobtail 6 0 5 Atrina rigida stiff penshell 6 1.9 5 1 Strombus alatus Florida fighting conch 5 0.3 4 8.0

Table 2. Species composition list (continued) NUMBER OF **TOTAL NUMBER TOTAL WEIGHT** TOWS WHERE % FREQUENCY **GENUS/SPECIES CAUGHT CAUGHT** OCCURRENCE COMMON NAME CAUGHT (KG) Pinctada 5 0.2 4 8.0 0 2 0.4 Laevicardium mortoni yellow eggcockle 4 Chama macerophylla leafy jewelbox 0.5 8.0 Fasciolaria tulipa true tulip 0.4 2 0.4 Busycon plagosus 0.3 0.2 Polystira tellea delicate giant turret 0 0.2 Diodora cayenensis Cayenne keyhole limpet 0 4 8.0 Calliostoma euglyptum 3 2 0.4 sculptured topsnail 0 Astrea phoebia 3 0 2 0.4 2 Ficus 3 0.1 0.4 fig 3 0 0.2 Neverita 3 Arcinella cornuta Florida spiny jewelbox 3 0.1 0.6 3 2 pearwhelk 0.1 0.4 Busycotypus spiratus 3 2 Hypselodoris edenticulata florida regal doris 0 0.4 2 0.2 Xenophora 0 2 2 Neverita duplicata 0 0.4 shark eye Aequipecten 2 0 0.2 2 2 Spondylus americanus Atlantic thorny oyster 0.4 0.4 2 0 0.2 Conus cones 2 0.3 2 0.4 atlantic deer cowrie Cypraea cervus 2 0 2 0.4 Pododesmus rudis Atlantic falsejingle Aequipecten muscosus rough scallop 2 0 2 0.4 Chama 2 0.4 0.2 Laevicardium 2 0 2 0.4 2 2 Fasciolaria spp. tulip shells 0 0.4 2 2 Busycon sinistrum lightning whelk 0.1 0.4 Semirossia equalis greater shining bobtail 2 0 0.2 Conus daucus carrot cone 2 0 2 0.4 Felimare 2 0.1 2 0.4 2 Calliostoma jujubinum mottled topsnail 2 0 0.4 2 Aplysia brasiliana mottled seahare 2 0 0.4

Table 2. Species composition list (continued) NUMBER OF **TOTAL NUMBER TOTAL WEIGHT TOWS WHERE** % FREQUENCY **GENUS/SPECIES** CAUGHT **CAUGHT** OCCURRENCE COMMON NAME CAUGHT (KG) Cassis tuberosa Caribbean helmet 2 3 2 0.4 2 0.1 2 0.4 Strombus costatus milk conch Chlamys benedicti Benedict scallop 2 0 2 0.4 Calyptraeidae 2 0.2 2 0.4 Macoma brevifrons short macoma 2 0.2 0.2 Neogastropoda 0 0.2 Chiton 0 0.2 Lithophaga aristata scissor datemussel 0.2 0 Crucibulum auricula West Indian cup-and-saucer 0.2 0 0.2 Octopus 0 Abra 0 0.2 0.2 Atrina serrata sawtooth penshell 0.2 0.2 Eucrassatella speciosa beautiful crassatella 0 0.2 Strombus raninus 1.6 hawkwing conch Fasciolariidae 0.2 0 0.2 Crucibulum striatum striate cup-and-saucer 0 Phyllonotus 0 0.2 0.2 Pleurobranchus slugs 0 0 0.2 Cypraea spurca 0.1 0.2 Scaphella junonia junonia 0 0.2 Octopus briareus Caribbean reef octopus Modiolus americanus American horsemussel 0 0.2 0 0.2 Anadara notabilis eared ark Pleurobranchus 0.1 0.2 0.2 Distorsio mcgintyi 0 Oliva sayana lettered olive 0 0.2 Haminoea antillarum Antilles glassy-bubble 0 0.2 Agriopoma texasianum Texas venus 0 0.2 Anomia simplex common jingle 0 0.2 Opisthobranchia opisthobranchs 0 0.2 Tellina listeri speckled tellin 0 0.2

Table 2. Species composition list (continued) NUMBER OF TOTAL NUMBER **TOTAL WEIGHT TOWS WHERE** % FREQUENCY GENUS/SPECIES COMMON NAME CAUGHT CAUGHT (KG) CAUGHT OCCURRENCE 0 0.2 Turritella exoleta eastern turretsnail 1 1 Cerodrillia 0.2 1 0 1 Chicoreus pomum apple murex 0 0.2 Cassis madagascariensis cameo helmet 3 0.2 Chama congregata corrugate jewelbox 0.2 0.2 Cephalopoda octopuses 0 0.2 Turbo 0 0.2 Conus amphiurgus 0 0.2 Callista eucymata glory-of-the-seas venus 0 0.2 Cerithium atratum dark cerith 0 0.2 Narcissia trigonaria 0 0.2 Buccinidae 0 0.2 Cassididae 0 0.2 Chicoreus 0 0.2 1 Aplysia 0.2 0.2 opistobranchs

Table 3. 2012 Fall Shrimp/Groundfish Survey species composition list, 280 trawl stations, for those vessels that used either a 40-ft or 20-ft trawl. Species with a total weight of less than 0.0227 kg (0.05 lb) are indicated on the table as 0.0 kg.

				NUMBER OF	
		TOTAL NUMBER	TOTAL WEIGHT	TOWS WHERE	% FREQUENCY
GENUS/SPECIES	COMMON NAME	CAUGHT	CAUGHT (KG)	CAUGHT	OCCURRENCE
Finfishes_					
Micropogonias undulatus	Atlantic croaker	70576	3132.7	159	56.8
Chloroscombrus chrysurus	Atlantic bumper	14841	446.7	111	39.6
Stenotomus caprinus	longspine porgy	12168	468.2	123	43.9
Leiostomus xanthurus	spot	10582	1138.8	94	33.6
Lagodon rhomboides	, pinfish	4253	330.7	109	38.9
Trachurus lathami	rough scad	3803	123.1	67	23.9
Serranus atrobranchus	blackear bass	3212	35.8	61	21.8
Lutjanus campechanus	red snapper	2770	148.6	146	52.1
Synodus foetens	inshore lizardfish	2760	317.2	162	57.9
Syacium papillosum	dusky flounder	2604	104	73	26.1
Prionotus roseus	bluespotted searobin	2584	25.5	35	12.5
Cynoscion nothus	silver seatrout	2174	128.9	90	32.1
Peprilus burti	gulf butterfish	1897	138.3	70	25
Upeneus parvus	dwarf goatfish	1841	52.1	62	22.1
Syacium gunteri	shoal flounder	1784	39	107	38.2
Haemulon aurolineatum	tomtate	1487	102.7	40	14.3
Stephanolepis hispida		1424	47.5	45	16.1
Diplectrum bivittatum	dwarf sand perch	1196	21.6	49	17.5
Centropristis philadelphica	rock sea bass	1144	52.1	97	34.6
Pristipomoides aquilonaris	wenchman	1126	65.6	34	12.1
Ariopsis felis	hardhead catfish	1097	221.9	48	17.1
Prionotus longispinosus	bigeye searobin	1085	53.3	91	32.5
_arimus fasciatus	banded drum	1028	57.6	44	15.7
Eucinostomus gula	silver jenny	889	40.4	47	16.8
Orthopristis chrysoptera	pigfish	849	74.5	37	13.2
Decapterus punctatus	round scad	842	4.2	4	1.4
Cynoscion arenarius	sand seatrout	826	78.1	76	27.1
Polydactylus octonemus	Atlantic threadfin	823	55	17	6.1

Table 3. Species composition list (continued)

				NUMBER OF	
		TOTAL NUMBER	TOTAL WEIGHT	TOWS WHERE	% FREQUENCY
GENUS/SPECIES	COMMON NAME	CAUGHT	CAUGHT (KG)	CAUGHT	OCCURRENCE
Diplectrum formosum	sand perch	748	67	52	18.6
Neomerinthe hemingwayi	spinycheek scorpionfish	704	25.4	45	16.1
Lutjanus synagris	lane snapper	631	49.9	100	35.7
Trichopsetta ventralis	sash flounder	605	12.5	15	5.4
Harengula jaguana	scaled sardine	581	23.7	50	17.9
Sphoeroides parvus	least puffer	575	3.9	59	21.1
Selene setapinnis	Atlantic moonfish	554	37.2	71	25.4
Saurida brasiliensis	largescale lizardfish	545	2.1	46	16.4
Trichiurus lepturus	Atlantic cutlassfish	528	25.3	33	11.8
Cyclopsetta chittendeni	Mexican flounder	507	40.4	87	31.1
Prionotus stearnsi	shortwing searobin	503	5.6	18	6.4
Citharichthys spilopterus	bay whiff	490	7.9	43	15.4
Anchoa hepsetus	striped anchovy	481	6.8	37	13.2
Scorpaena brasiliensis	barbfish	420	10.5	20	7.1
Calamus proridens	littlehead porgy	419	87.7	22	7.9
Mullus auratus	red goatfish	392	19	21	7.5
Stellifer lanceolatus	star drum	385	5.4	26	9.3
Etropus crossotus	fringed flounder	379	6.5	65	23.2
Ophidion holbrookii	bank cusk-eel	367	26.1	22	7.9
Synodus poeyi	offshore lizardfish	358	2.1	33	11.8
Halieutichthys aculeatus	pancake batfish	339	2	50	17.9
Chaetodipterus faber	Atlantic spadefish	318	17.1	75	26.8
Balistes capriscus	gray triggerfish	312	17.8	67	23.9
łaemulon plumierii	white grunt	268	51.8	23	8.2
Synodus intermedius	sand diver	267	24.7	33	11.8
canthostracion quadricornis		260	48	36	12.9
revoortia patronus	gulf menhaden	258	25.4	15	5.4
Bellator militaris	horned searobin	249	3.2	9	3.2
epophidium brevibarbe	blackedge cusk-eel	206	6.6	27	9.6
Centropristis ocyurus	bank sea bass	206	9.5	25	8.9
Prionotus scitulus	leopard searobin	202	9.4	23	8.2

Table 3. Species composition list (continued)

				NUMBER OF	
		TOTAL NUMBER	TOTAL WEIGHT	TOWS WHERE	% FREQUENCY
GENUS/SPECIES	COMMON NAME	CAUGHT	CAUGHT (KG)	CAUGHT	OCCURRENCE
Prionotus paralatus	Mexican searobin	200	7.4	16	5.7
Brevoortia tyrannus	Atlantic menhaden	177	15.4	2	0.7
epophidium jeannae	mottled cusk-eel	175	8.7	11	3.9
Eucinostomus argenteus	spotfin mojarra	169	4.4	19	6.8
Rhomboplites aurorubens	vermilion snapper	164	11	20	7.1
Equetus lanceolatus	jackknife fish	163	17	18	6.4
Prionotus rubio	blackwing searobin	162	13.3	18	6.4
Porichthys plectrodon	Atlantic midshipman	153	3.1	39	13.9
Opisthonema oglinum	Atlantic thread herring	148	10.5	21	7.5
Bagre marinus	gafftopsail catfish	130	15.6	25	8.9
Pagrus pagrus	red porgy	116	11.1	10	3.6
Menticirrhus americanus	southern kingfish	114	16.8	20	7.1
Caranx crysos	blue runner	108	13.2	30	10.7
nchoa mitchilli	bay anchovy	100	0.1	15	5.4
areques umbrosus	cubbyu	97	3.4	14	5
luterus schoepfii	orange filefish	90	44.1	22	7.9
Sphoeroides spengleri	bandtail puffer	90	3.8	18	6.4
Calamus leucosteus	whitebone porgy	86	17.4	12	4.3
rionotus ophryas	bandtail searobin	85	2.2	16	5.7
Peprilus paru	harvestfish	84	6.8	12	4.3
Bothus robinsi	twospot flounder	79	1.7	16	5.7
rachinocephalus myops	snakefish	70	4.4	22	7.9
Paralichthys albigutta	gulf flounder	70	20	13	4.6
loplunnis macrura	freckled pike-conger	69	0.5	16	5.7
gcocephalus declivirostris	slantbrow batfish	69	1.1	17	6.1
hynchoconger flavus	yellow conger	67	4.1	11	3.9
trumeus teres	round herring	66	1.9	4	1.4
ecapterus macarellus	mackeral scad	65	1.2	2	0.7
ontinus longispinis	longspine scorpionfish	61	1.6	2	0.7
Prionotus alatus	spiny searobin	58	1	4	1.4
Ancylopsetta ommata	ocellated flounder	56	9.3	26	9.3

Table 3. Species composition list (continued)

				NUMBER OF	
		TOTAL NUMBER	TOTAL WEIGHT	TOWS WHERE	% FREQUENCY
GENUS/SPECIES	COMMON NAME	CAUGHT	CAUGHT (KG)	CAUGHT	OCCURRENCE
Selar crumenophthalmus	bigeye scad	55	3.3	16	5.7
Ophidion josephi	crested cusk-eel	50	2.5	13	4.6
Paralichthys lethostigma	southern flounder	49	16.5	25	8.9
Citharichthys macrops	spotted whiff	48	1.5	17	6.1
agocephalus laevigatus	smooth puffer	48	3	30	10.7
Kathetostoma albigutta	lancer stargazer	47	1.7	16	5.7
Etropus cyclosquamus	shelf flounder	45	0.6	4	1.4
Prionotus martis	barred searobin	45	1.7	1	0.4
Sphyraena guachancho	guaguanche	44	4	14	Ę
Prionotus tribulus	bighead searobin	44	2.3	18	6.4
Chilomycterus schoepfii	striped burrfish	42	12.9	20	7.1
Ophidion grayi	blotched cusk-eel	42	1.8	6	2.
Sphoeroides dorsalis	marbled puffer	42	2.1	8	2.9
Bellator brachychir	shortfin searobin	40	0.2	4	1.4
Raja texana	roundel skate	35	17.7	23	8.2
Syacium micrurum	channel flounder	34	0.9	4	1.4
Raja eglanteria	clearnose skate	31	14.3	16	5.7
Symphurus plagiusa	blackcheek tonguefish	31	0.7	15	5.4
Symphurus diomedeanus	spottedfin tonguefish	30	0.9	12	4.3
Bothus lunatus	peacock flounder	29	1	5	1.8
Sphyrna tiburo	bonnethead	29	16.7	14	Ę
Scomberomorus cavalla	king mackerel	27	2.8	8	2.9
Ogcocephalus corniger	longnose batfish	27	0.7	4	1.4
ancylopsetta dilecta	three-eye flounder	25	1.6	8	2.9
Serranus phoebe	tattler	25	0.9	3	1.1
canthostracion quadricornis	scrawled cowfish	24	3	5	1.8
Cyclopsetta fimbriata	spotfin flounder	24	1.4	11	3.9
Pareques iwamotoi	blackbar drum	24	2.5	5	1.8
Caulolatilus intermedius	anchor tilefish	23	3.2	7	2.5
Apogon aurolineatus	bridle cardinalfish	23	0.1	7	2.5
Centropristis striatus	black sea bass	23	3.7	5	1.8

Table 3. Species composition list (continued)

				NUMBER OF	
		TOTAL NUMBER	TOTAL WEIGHT	TOWS WHERE	% FREQUENCY
GENUS/SPECIES	COMMON NAME	CAUGHT	CAUGHT (KG)	CAUGHT	OCCURRENCE
Pristigenys alta	short bigeye	22	0.2	11	3.9
Urophycis floridana	southern hake	22	2.6	6	2.
Rhizoprionodon terraenovae	Atlantic sharpnose shark	20	33.8	15	5.4
Brotula barbata	bearded brotula	20	1.7	10	3.0
Gymnachirus texae	fringed sole	19	0.3	9	3.2
Ogcocephalus cubifrons	polka-dot batfish	19	6.1	9	3.2
Otophidium omostigmum	polka-dot cusk-eel	18	0.2	5	1.8
Jrophycis cirrata	gulf hake	18	0.7	3	1.1
_achnolaimus maximus	hogfish	18	4.8	8	2.9
Selene vomer	lookdown	17	0.5	8	2.9
Echeneis naucrates	sharksucker	17	6.8	7	2.
Monacanthus ciliatus	fringed filefish	16	0.3	3	1.
Dasyatis americana	southern stingray	15	31.5	11	3.
Oorosoma petenense	threadfin shad	15	0.7	6	2.
utjanus griseus	grey snapper	13	4.9	8	2.9
Symphurus urospilus	spottail tonguefish	13	0.3	4	1.4
Rhynchoconger gracilior		12	0.6	1	0.4
Ogcocephalus parvus	roughback batfish	12	0.1	5	1.8
Peprilus paru	harvestfish	12	1.2	5	1.3
Symnothorax saxicola	honeycomb moray	12	1.3	10	3.
Scomberomorus maculatus	Spanish mackerel	11	1.7	9	3.3
Engyophrys senta	spiny flounder	11	0	6	2.
Symphurus arawak	Caribbean tonguefish	11	0.3	3	1.
Echeneis neucratoides	whitefin sharksucker	11	5.6	5	1.
Epinephelus morio	red grouper	11	7.3	6	2.
Ogcocephalus pantostictus	spotted batfish	10	0.3	4	1.
Chaetodon ocellatus	spotfin butterflyfish	10	0.6	5	1.3
Antennarius radiosus	singlespot frogfish	10	0.1	6	2.
Sardinella aurita	Spanish sardine	10	0.2	3	1.
Neobythites gilli	cusk-eel	9	0	1	0.
Gastropsetta frontalis	shrimp flounder	9	0.8	5	1.

Table 3. Species composition list (continued)

				NUMBER OF	
		TOTAL NUMBER	TOTAL WEIGHT	TOWS WHERE	% FREQUENCY
GENUS/SPECIES	COMMON NAME	CAUGHT	CAUGHT (KG)	CAUGHT	OCCURRENCE
Aluterus scriptus	scrawled filefish	9	1.9	6	2.1
Paralichthys squamilentus	broad flounder	9	2.4	7	2.5
Caranx hippos	crevalle jack	9	1.4	3	1.1
Decodon puellaris	red hogfish	9	0.3	4	1.4
Apogon pseudomaculatus	twospot cardinalfish	9	0.1	2	0.7
Cynoscion spp.	seatrouts	8	0	1	0.4
Synagrops bellus	blackmouth bass	8	0.1	1	0.4
Sciaenops ocellatus	red drum	8	40.6	3	1.1
Pareques acuminatus	high-hat	8	0.1	3	1.1
Citharichthys cornutus	horned whiff	8	0	1	0.4
Calamus bajonado	jolthead porgy	7	1.7	2	0.7
Frachinotus carolinus	Florida pompano	7	3.2	5	1.8
Bollmannia communis	ragged goby	7	0	6	2.
Narcine brasiliensis	lesser electric ray	7	5.9	7	2.5
Rypticus maculatus	whitespotted soapfish	7	0.3	4	1.4
Antennarius ocellatus	ocellated frogfish	7	0.1	2	0.7
Steindachneria argentea	luminous hake	6	0.1	1	0.4
Hippocampus erectus	lined seahorse	6	0.1	6	2.
Nicholsina usta	emerald parrotfish	6	1.3	2	0.7
Ophidiidae	cusk-eels	6	0	3	1.1
Serranus subligarius	belted sandfish	6	0	1	0.4
Pterois	lion fishes	6	1.1	4	1.4
Clupea harengus	Atlantic herring	6	0.6	1	0.4
Hemipteronotus novacula	pearly razorfish	6	0.4	4	1.4
Jnid.fish	fishes	5	0	2	0.7
Symphurus piger	deepwater tonguefish	5	0.1	1	0.4
Rhinobatos lentiginosus	Atlantic guitarfish	5	3.6	3	1.
Ophidiiformes	ophidiiforms	5	0	2	0.7
Apogon spp.	cardinalfishes	5	0	1	0.4
Physiculus fulvus	metallic codling	5	0	1	0.
Gobiidae	gobies	5	0	3	1.

Table 3. Species composition list (continued)

				NUMBER OF	
		TOTAL NUMBER	TOTAL WEIGHT	TOWS WHERE	% FREQUENCY
GENUS/SPECIES	COMMON NAME	CAUGHT	CAUGHT (KG)	CAUGHT	OCCURRENCE
Gobionellus oceanicus	highfin goby	5	0	2	0.7
Rachycentron canadum	cobia	4	1.4	4	1.4
Fistularia petimba	red cornetfish	4	0.3	3	1.1
Rypticus subbifrenatus	spotted soapfish	4	0.1	4	1.4
Parexocoetus brachypterus	sailfin flyingfish	4	0	1	0.4
Hemicaranx amblyrhynchus	bluntnose jack	4	0	2	0.7
Seriola rivoliana	almaco jack	4	1.8	1	0.4
Hemanthias vivanus	red barbier	4	0.1	2	0.7
Carcharhinus acronotus	blacknose shark	4	8.9	3	1.1
Phaeoptyx conklini	freckled cardinalfish	4	0	3	1.1
Pomacanthus arcuatus	gray angelfish	4	0.2	2	0.7
Parexocoetus		4	0	1	0.4
losa pseudoharengus	alewife	4	0.2	1	0.4
Dasyatis say	bluntnose stingray	4	6.1	2	0.7
Symphurus parvus	pygmy tonguefish	4	0.1	1	0.4
Jrophycis regia	spotted hake	4	0.2	1	0.4
lolacanthus bermudensis	blue angelfish	3	1	3	1.1
Apogon affinis	bigtooth cardinalfish	3	0	2	0.7
Menticirrhus saxatilis	northern kingfish	3	0.7	2	0.7
Opsanus		3	0	1	0.4
Apogon planifrons	pale cardinalfish	3	0	1	0.4
Diplodus holbrooki	spottail pinfish	3	0.4	1	0.4
Parablennius marmoreus	seaweed blenny	3	0	1	0.4
pogon alutus		3	0	1	0.4
lalieutichthys		3	0	2	0.7
symphurus pelicanus	longtail tonguefish	3	0	1	0.4
Mustelus	smooth hound sharks	3	11.8	2	0.7
Squatina dumeril	Atlantic angel shark	3	1.6	2	0.7
Pogonias cromis	black drum	3	5.2	2	0.7
Hirundichthys rondeletii	blackwing flyingfish	3	0.2	1	0.4
Bairdiella chrysoura	silver perch	2	0	2	0.7

Table 3. Species composition list (continued)

				NUMBER OF	
		TOTAL NUMBER	TOTAL WEIGHT	TOWS WHERE	% FREQUENCY
GENUS/SPECIES	COMMON NAME	CAUGHT	CAUGHT (KG)	CAUGHT	OCCURRENCE
Mustelus sinusmexicanus	Gulf smoothhound	2	1.6	2	0.7
Chaetodon sedentarius	reef butterflyfish	2	0.1	2	0.7
Hyporthodus flavolimbatus		2	0.2	2	0.7
Symphurus civitatium	offshore tonguefish	2	0	2	0.7
Gymnachirus melas	naked sole	2	0	1	0.4
Pomatomus saltatrix	bluefish	2	0.2	2	0.7
Pomacentrus variabilis	cocoa damselfish	2	0	2	0.7
Opsanus beta	gulf toadfish	2	0.2	2	0.7
Halichoeres bathyphilus	greenband wrasse	2	0	1	0.4
Rhinoptera bonasus	cownose ray	2	5.3	2	0.7
Seriola dumerili	greater amberjack	2	0.8	2	0.7
obotes surinamensis	Atlantic tripletail	2	0.2	1	0.4
Rypticus bistrispinus	freckled soapfish	2	0.1	2	0.7
Ophidion beani	longnose cusk-eel	2	0.2	1	0.4
Estropus microstomus	smallmouth flounder	2	0	1	0.4
Stephanolepis hispida	planehead filefish	2	0	1	0.4
anchoa lyolepis	dusky anchovy	1	0	1	0.4
Gobiesox punctulatus	stippled clingfish	1	0	1	0.4
Mycteroperca microlepis	gag	1	0.5	1	0.4
Elops saurus	ladyfish	1	0.1	1	0.4
Gobiesox strumosus	skilletfish	1	0	1	0.4
Engraulidae	anchovies	1	0	1	0.4
Epinephelus guttatus	red hind	1	0	1	0.4
Monacanthus tuckeri	slender filefish	1	0	1	0.4
Holacanthus ciliaris	queen angelfish	1	0	1	0.4
Pareques		1	0	1	0.4
Monolene sessilicauda	deepwater flounder	1	0	1	0.4
Phaeoptyx		1	0	1	0.4
Dasyatis sabina	Atlantic stringray	1	0.1	1	0.4
Mustelus norrisi	Florida smoothhound	1	0.5	1	0.4
Echiophis punctifer	snapper eel	1	0.1	1	0.4

Table 3. Species composition list (continued)

				NUMBER OF	
		TOTAL NUMBER	TOTAL WEIGHT	TOWS WHERE	% FREQUENCY
GENUS/SPECIES	COMMON NAME	CAUGHT	CAUGHT (KG)	CAUGHT	OCCURRENCE
Acanthostracion polygonius	honeycomb cowfish	1	0	1	0.4
Ophichthus spp.	snake eels	1	0.1	1	0.4
Aluterus monoceros	unicorn filefish	1	0.1	1	0.
Bregmacerotidae	bregmacerotid codfishes	1	0	1	0.
_utjanidae	snappers	1	0	1	0.
Epinephelus	groupers	1	0	1	0.
rachinotus goodei	palometa	1	0.2	1	0.
Selenaspis		1	0	1	0.
Echiophis intertinctus	spotted spoon-nose eel	1	0.3	1	0.
Symnura altavela	spiny butterfly ray	1	0.9	1	0.
abridae	wrasses	1	0	1	0.
Phaeoptyx xenus	sponge cardinalfish	1	0	1	0.
riacanthus arenatus	bigeye	1	0.2	1	0.
corpaena calcarata	smoothhead scorpionfish	1	0	1	0.
rognathodes aya	bank butterflyfish	1	0	1	0.
asyatis centroura	clam cracker	1	2.1	1	0.
Symphurus minor	largescale tonguefish	1	0	1	0.
pinephelus niveatus	snowy grouper	1	0.1	1	0.
Chromis enchrysura	yellowtail reeffish	1	0	1	0.
Calamus nodosus	knobbed porgy	1	0.2	1	0.
<u>Crustaceans</u>					
arfantepenaeus aztecus	brown shrimp	12062	310.1	158	56.
Callinectes similis	lesser blue crab	1569	32.7	105	37.
arfantepenaeus duorarum	pink shrimp	1278	30	46	16.
quilla empusa	mantis shrimp	1119	11.6	65	23.
ortunus gibbesii	irridescent swimming crab	1026	8.8	75	26.
ortunus spinicarpus	longspine swimming crab	928	5.8	54	19
itopenaeus setiferus	white shrimp	909	26.3	61	21.
Sicyonia brevirostris	brown rock shrimp	776	12	48	17

Table 3. Species composition list (continued)

				NUMBER OF	
		TOTAL NUMBER	TOTAL WEIGHT	TOWS WHERE	% FREQUENCY
GENUS/SPECIES	COMMON NAME	CAUGHT	CAUGHT (KG)	CAUGHT	OCCURRENCE
Rimapenaeus constrictus	roughneck shrimp	724	3.1	31	11.1
Xiphopenaeus kroyeri	seabob	414	1.4	4	1.4
Squilla chydaea	mantis shrimp	380	3	42	15
Solenocera vioscai	humpback shrimp	321	1.5	18	6.4
Sicyonia dorsalis	lesser rock shrimp	304	1.4	31	11.1
Rimapenaeus similis	roughback shrimp	203	0.4	46	16.4
Raninoides louisianensis	gulf frog crab	185	1.5	17	6.1
Anasimus latus	stilt spider crab	164	1.3	22	7.9
Portunus sayi	sargassum swimming crab	156	1.3	8	2.9
Portunus spinimanus	blotched swimming crab	131	3.3	29	10.4
Calappa sulcata	yellow box crab	118	22.4	44	15.7
Metapenaeopsis goodei	Caribbean velvet shrimp	110	0.1	8	2.9
Stenorhynchus seticornis	yellowline arrow crab	54	0.2	25	8.8
Persephona mediterranea	mottled purse crab	51	1.8	2	0.7
Parapenaeus politus	deepwater rose shrimp	43	0	6	2.
Pagurus annulipes		37	0	4	1.4
eiolambrus nitidus	white elbow crab	36	0.1	12	4.3
Callinectes sapidus	blue crab	34	4.8	14	!
Euphrosynoplax clausa	craggy bathyal crab	30	0.4	7	2.9
Scyllarides nodifer	ridged slipper lobster	29	8.4	9	3.2
Libinia dubia	longnose spider crab	28	0.2	21	7.5
Callinectes	swimming crabs	28	0.3	1	0.4
Pagurus pollicaris	flatclaw hermit crab	26	0.3	14	ŧ
Myropsis quinquespinosa	fivespine purse crab	22	0.1	4	1.4
Acanthocarpus alexandri	gladiator box crab	22	0.4	2	0.7
eseudorhombila quadridentata	flecked squareback crab	20	0.1	3	1.
Pilumnus sayi	spineback hairy crab	18	0.1	11	3.9
Cryptodromiopsis antillensis	hairy sponge crab	18	0.1	7	2.9
Лysidae	shrimps	17	0	1	0.4
Acetes americanus	aviu shrimp	16	0	4	1.4
Calappa flammea	flame box crab	16	1.5	9	3.

Table 3. Species composition list (continued)

				NUMBER OF	
		TOTAL NUMBER	TOTAL WEIGHT	TOWS WHERE	% FREQUENCY
GENUS/SPECIES	COMMON NAME	CAUGHT	CAUGHT (KG)	CAUGHT	OCCURRENCE
Metoporhaphis calcarata	false arrow crab	16	0	10	3.6
Libinia emarginata	portly spider crab	15	0.1	5	1.8
Pseudomedaeus agassizii	rough rubble crab	15	0	3	1.1
/lajidae	spider crabs	14	0.1	7	2.5
Collodes robustus	spider crab	14	0.1	9	3.2
Panopeus simpsoni	oystershell mud crab	12	0.1	1	0.4
Podochela sidneyi	shortfinger neck crab	11	0	5	1.8
Ovalipes floridanus	Florida lady crab	11	0.2	4	1.4
Kanthidae	mud crabs	9	0.1	4	1.4
Scyllarus depressus	scaled slipper lobster	9	0	4	1.4
etrochirus diogenes	giant hermit crab	8	0.4	5	1.8
lepatus epheliticus	calico crab	8	0.4	3	1.1
tenocionops furcatus furcatus	furcate crab	8	0.9	4	1.4
agurus bullisi	hermit crab	8	0	4	1.4
lunida forceps	squat lobster	8	0	4	1.4
ersephona crinita	pink purse crab	7	0	6	2.
icyonia parri	rock shrimps	7	0	3	1.
aguristes triangulatus	hermit crab	7	0.1	5	1.8
ardanus fucosus	bareye hermit	7	0	3	1.1
Scyllarus chacei	chace slipper lobster	7	0	6	2.1
Petrolisthes armatus	green porcelain crab	7	0	1	0.4
solenocera atlantidis	dwarf humpback shrimp	6	0	2	0.7
speocarcinus lobatus	gulf squareback crab	6	0	3	1.1
tenocionops spinosissimus	tenspine spider crab	5	0.1	1	0.4
Pardanus insignis	red brocade hermit	5	0	1	0.4
lagusia depressa	tidal spray crab	4	0	4	1.4
icyonia typica	kinglet rock shrimp	4	0	1	0.4
lpheidae	snapping shrimps	4	0	1	0.4
tenocionops spinimanus	prickly spider crab	4	0.1	3	1.
Plesionika longicauda	pandalid shrimp	4	0.1	2	0.7
Mesopenaeus tropicalis	salmon shrimp	4	0	1	0.4

Table 3. Species composition list (continued)

				NUMBER OF	
		TOTAL NUMBER	TOTAL WEIGHT	TOWS WHERE	% FREQUENCY
GENUS/SPECIES	COMMON NAME	CAUGHT	CAUGHT (KG)	CAUGHT	OCCURRENCE
Platylambrus granulata	bladetooth elbow crab	3	0	2	0.7
Decapoda	crabs	3	0	1	0.4
Lironeca redmanni		3	0	1	0.4
Squilla spp.	mantis shrimps	3	0	2	0.7
Scyllaridae	slipper lobsters	3	0	1	0.4
Portunidae	swimming crabs	3	0	1	0.4
Penaeidae	penaeid shrimps	3	0	1	0.4
Porcellana sayana	spotted porcelain crab	2	0	1	0.4
Paguristes sericeus	blue-eyed hermit	2	0	1	0.4
Calappa		2	0	1	0.4
Porcellanidae	porcelain crabs	2	0	2	0.7
Lysmata wurdemanni	peppermint shrimp	2	0	1	0.4
Paguristes hummi	left-handed hermit crabs	1	0	1	0.4
Danielum ixbauchac	red sea crab	1	0	1	0.4
Mithrax acuticornis	sharphorn clinging crab	1	0	1	0.4
Plagusia		1	0	1	0.4
Pachycheles ackleianus	red-reef porcelain crab	1	0	1	0.4
Acanthilia intermedia	granulose purse crab	1	0	1	0.4
Parthenope serrata	sawtooth elbow crab	1	0	1	0.4
Osachila semilevis	thinlip jewelbox crab	1	0.1	1	0.4
Arenaeus cribrarius	speckled swimming crab	1	0	1	0.4
Raninoides spp.	frog crabs	1	0	1	0.4
Menippe adina	Gulf stone crab	1	0	1	0.4
Leiolambrus nitidus	white elbow crab	1	0	1	0.4
<u>Others</u>					
Amusium papyraceum	paper scallop	5330	69.2	49	17.5
Loligo plei	arrow squid	1250	19.8	89	31.8
Lolliguncula brevis	Atlantic brief squid	1060	6.7	69	24.6
Loligo pealeii	longfin squid	463	13.3	50	17.9

Table 3. Species composition list (continued)

				NUMBER OF	
		TOTAL NUMBER	TOTAL WEIGHT	TOWS WHERE	% FREQUENCY
GENUS/SPECIES	COMMON NAME	CAUGHT	CAUGHT (KG)	CAUGHT	OCCURRENCE
Nassarius acutus	sharp nassa	158	0	3	1.1
Agriopoma texasianum	Texas venus	150	3.2	2	0.7
Pitar cordatus	Schwengel's pitar	143	3.2	17	6.1
Anadara baughmani	Baughman's ark	139	1.9	10	3.6
Polystira albida	white giant turris	135	1	8	2.9
Anadara ovalis	blood ark	101	0.1	15	5.4
Macoma brevifrons	short macoma	45	0.3	4	1.4
₋oligo spp.	squids	29	0.7	8	2.9
Cantharus cancellarius	cancellate cantharus	21	0.1	10	3.6
Noetia ponderosa	ponderous ark	16	0.3	2	0.7
Neverita		15	0.1	10	3.6
Stramonita haemastoma	rocksnail	12	0	2	0.7
irophora clenchi	Clench venus	11	0.1	5	1.8
Sconsia striata	royal bonnet	10	0.2	6	2.1
onna galea	giant tun	10	1.1	3	1.1
Aequipecten muscosus	rough scallop	9	0	4	1.4
Conus	cones	7	0.2	2	0.7
Anadara floridana	cut-ribbed ark	7	0	1	0.4
Pelecypoda		5	0.5	1	0.4
aevicardium laevigatum	egg cockle	5	0.3	2	0.7
Octopus vulgaris	common Atlantic octopus	5	0.5	3	1.1
Neverita duplicata	shark eye	5	0	3	1.1
Distorsio clathrata	Atlantic distorsio	4	0	3	1.1
Argopecten gibbus	calico scallop	4	0.1	2	0.7
Ostrea equestris	crested oyster	3	0.1	1	0.4
Octopus joubini	Atlantic pygmy octopus	3	0	2	0.7
susycon sinistrum	lightning whelk	3	0.1	3	1.1
Atrina seminuda	half-naked penshell	3	1.3	1	0.4
Argopecten irradians	bay scallop	3	0	1	0.4
Solenidae		2	0	1	0.4
Nudibranchia	nudibranchs	2	0	1	0.4

Table 3. Species composition list (continued)

				NUMBER OF	
				NUMBER OF	
		TOTAL NUMBER	TOTAL WEIGHT	TOWS WHERE	% FREQUENCY
GENUS/SPECIES	COMMON NAME	CAUGHT	CAUGHT (KG)	CAUGHT	OCCURRENCE
Busycon plagosus		2	0.1	2	0.7
Macoma pulleyi	delta macoma	2	0	1	0.4
Corillidae		2	40.6	2	0.7
Fusinus		1	0	1	0.4
Nemocardium transversum	transverse micro-cockle	1	0	1	0.4
Fasciolaria lilium	banded tulip	1	0	1	0.4
Strombus gigas	queen conch	1	4.6	1	0.4
Abralia redfieldi		1	0	1	0.4
Semirossia equalis	greater shining bobtail	1	0	1	0.4
Hexaplex fulvescens	giant eastern murex	1	0	1	0.4
Dinocardium robustum	Atlantic giant-cockle	1	0	1	0.4
Fasciolaria tulipa	true tulip	1	0	1	0.4
Rangia flexuosa	brown rangia	1	0	1	0.4
Gastropoda	snails	1	0	1	0.4
Stramonita	rocksnails	1	0	1	0.4
Cypraea cervus	atlantic deer cowrie	1	0	1	0.4
Pectinidae	bivalves	1	0	1	0.4

GENUS/SPECIES		TOTAL NUMBER CAUGHT	TOTAL NUMBER WEIGHED	TOTAL WEIGHT
	COMMON NAME			
Rhizoprionodon terraenovae	Atlantic sharpnose shark	2298	2124	6501.7
Mustelus canis	dusky smooth-hound	490	479	2699.15
Carcharhinus limbatus	blacktip shark	386	294	3691.75
Lutjanus campechanus	red snapper	348	312	1297.5
Bagre marinus	gafftopsail catfish	221	204	267.3
Ophichthus rex	king snake eel	191	182	1157
Carcharhinus brevipinna	spinner shark	128	111	1033.61
Sciaenops ocellatus	red drum	98	87	730.8
Carcharhinus leucas	bull shark	94	26	286.39
Carcharhinus acronotus	blacknose shark	54	52	379.7
Arius felis	hardhead catfish	38	34	26.95
Carcharhinus plumbeus	sandbar shark	34	34	273.7
Carcharhinus isodon	finetooth shark	29	28	304.4
Sphyrna lewini	scalloped hammerhead	27	17	204
Dasyatis americana	southern stingray	25	9	81.74
Carcharhinus falciformis	silky shark	18	17	108.3
Epinephelus flavolimbatus	yellowedge grouper	17	17	115.3
Brotula barbatum	bearded brotula	10	10	45.5
Galeocerdo cuvier	tiger shark	9	3	19.8
Echeneis naucrates	sharksucker	9	8	11
Sphyrna mokarran	great hammerhead	7	1	0
Pogonias cromis	black drum	5	4	45
Rhizoprionodon porosus	Caribbean sharpnose shark	4	4	14.4
Jnid.fish		4	0	
Euthynnus alletteratus	false albacore	4	4	14.45
Rachycentron canadum	cobia	4	4	65
Ginglymostoma cirratum	nurse shark	4	0	
Trichiurus lepturus	Atlantic cutlassfish	4	0	

Table 4. 2012 Bottom Longline Survey species composition list. Species with no weight recorded were too large to measure. TOTAL **TOTAL** TOTAL NUMBER NUMBER **GENUS/SPECIES** CAUGHT WEIGHED WEIGHT COMMON NAME 2 Rhinoptera bonasus cownose ray 4 20.96 Manta birostris 3 1 18 Atlantic manta Carcharhinus 0 gray sharks 3 3 Gymnothorax saxicola honeycomb moray 3 4.1 0 Carcharhinidae requiem sharks 3 Seriola dumerili greater amberjack 3 3 27.1 Caranx hippos 3 31.8 crevalle jack 3 Scomberomorus cavalla 2.2 king mackerel 2 1 Atlantic stingray 2 2 6.7 Dasyatis sabina Centropristis philadelphicus Rock Sea bass 2 2 0.45 Cynoscion arenarius sand seatrout 2 2 0.55 Raja eglanteria 1.2 clearnose skate 1 1 Scomberomorus maculatus Atlantic Spanish mackerel 1 1.2 Unid other 0 1 Lopholatilus chamaeleonticeps blue tilefish 1 5.7 Lutjanus synagris 2 lane snapper 1 1 Epinephelus nigritus warsaw grouper 1 1 14.1 Sphyrna tiburo bonnethead 8 1 Unid other 0 1 Neomerinthe hemingwayi spinycheek scorpionfish 1 1 1 Dasyatis centroura clam cracker 1 19 1

GENUS/SPECIES		TOTAL	TOTAL NUMBER WEIGHED	
	COMMON NAME	NUMBER CAUGHT		TOTAL WEIGHT
Lutjanus campechanus	red snapper	1199	1192	2498.739
Pomatomus saltatrix	bluefish	16	15	16.92
Balistes capriscus	gray triggerfish	15	14	26.07
Carcharhinus falciformis	silky shark	15	14	47.5
Seriola rivoliana	almaco jack	13	13	8.34
Rhizoprionodon terraenovae	Atlantic sharpnose shark	11	6	20.7
Rhomboplites aurorubens	vermilion snapper	7	7	8.24
Pagrus pagrus	red porgy	5	5	3.9
Caranx crysos	blue runner	5	5	4
Sciaenops ocellatus	red drum	4	4	14.25
Cynoscion arenarius	sand seatrout	4	4	2.15
Mycteroperca phenax	scamp	4	4	7.25
Euthynnus alletteratus	false albacore	3	1	3.85
Echeneis naucrates	sharksucker	3	3	3.65
Epinephelus morio	red grouper	2	2	9.2
Lutjanus synagris	lane snapper	2	2	1.78
Lagodon rhomboides	pinfish	2	2	1.3
Haemulon aurolineatum	tomtate	2	2	0.5
Seriola dumerili	greater amberjack	1	1	9.5
Epinephelus niveatus	snowy grouper	1	1	1.2
Canthidermis sufflamen	ocean triggerfish	1	1	1.33
Carcharhinus limbatus	blacktip shark	1	1	4.5
Decapterus punctatus	round scad	1	1	0.05
Micropogonias undulatus	Atlantic croaker	1	1	0.5
Carcharhinus brevipinna	spinner shark	1	0	
Centropristis philadelphicus	Rock Sea bass	1	1	0.1
Centropristis ocyura		1	1	0.25

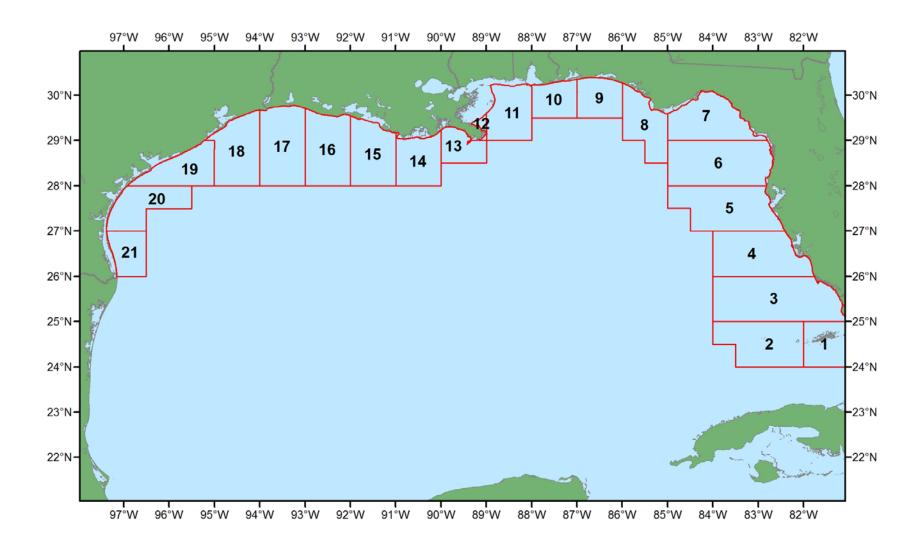


Figure 1. Statistical zones for shrimp in the Gulf of Mexico.

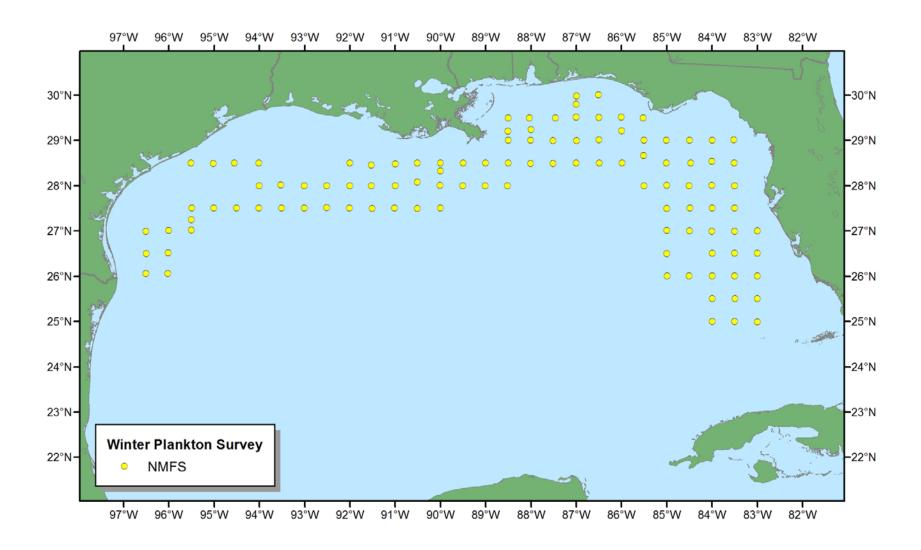


Figure 2. Locations of plankton and environmental stations during the 2012 Winter Plankton Survey.

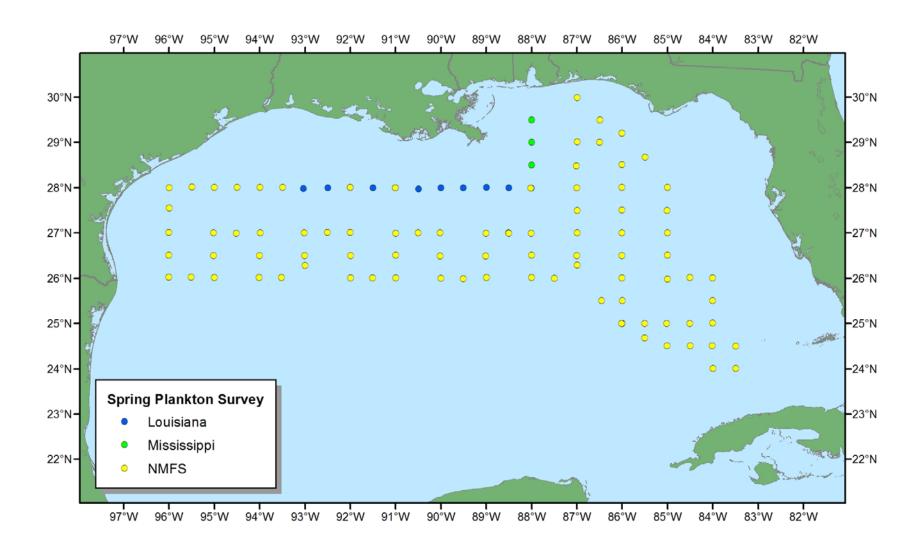


Figure 3. Locations of plankton and environmental stations during the 2012 Spring Plankton Survey.

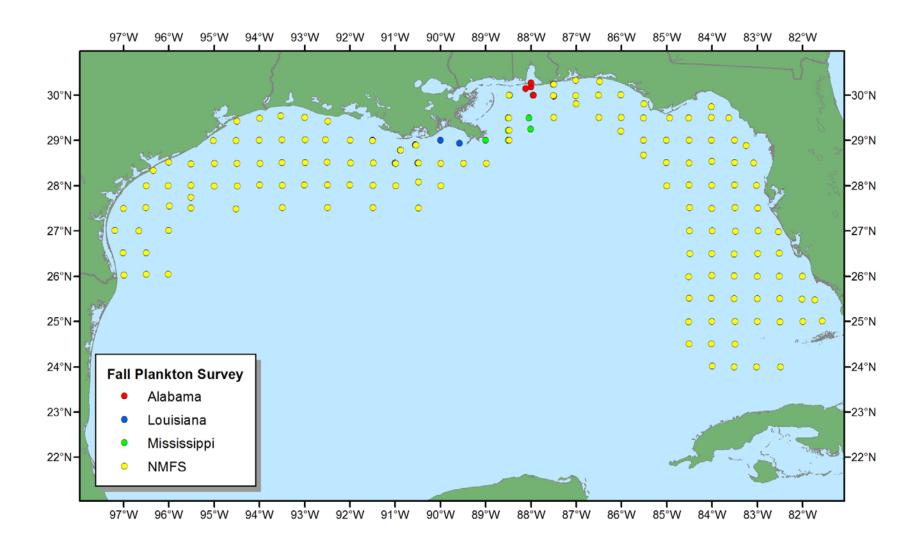


Figure 4. Locations of stations during the 2012 Fall Plankton Survey.

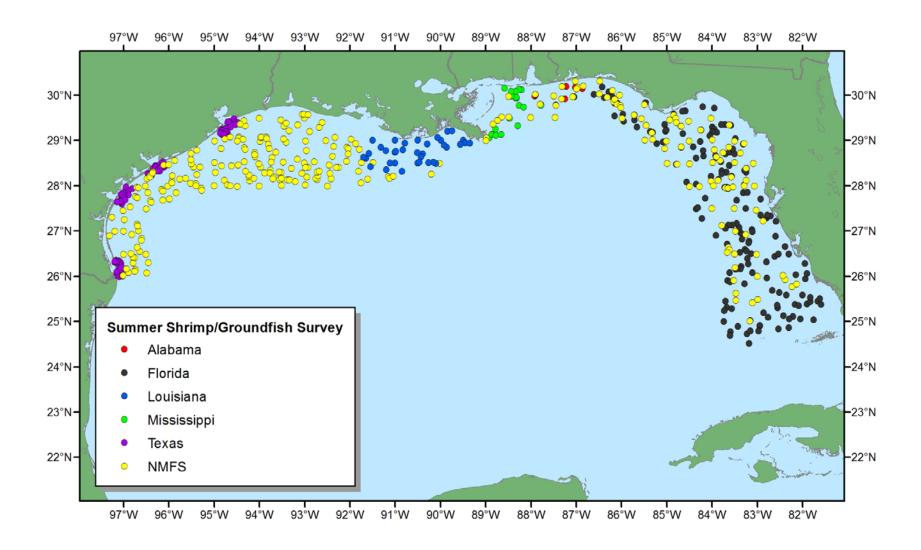


Figure 5. Locations of stations during the 2012 Summer Shrimp/Groundfish Survey.

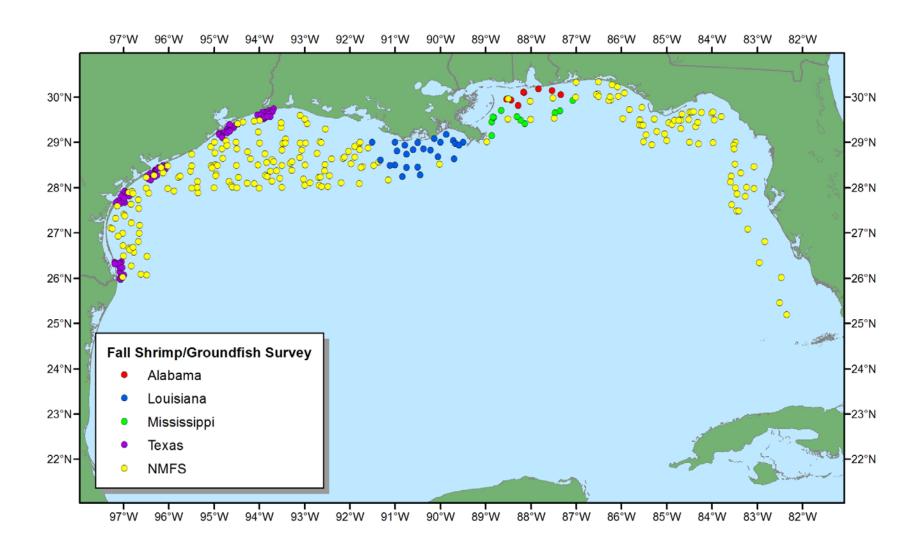


Figure 6. Locations of stations during the 2012 Fall Shrimp/Groundfish Survey.

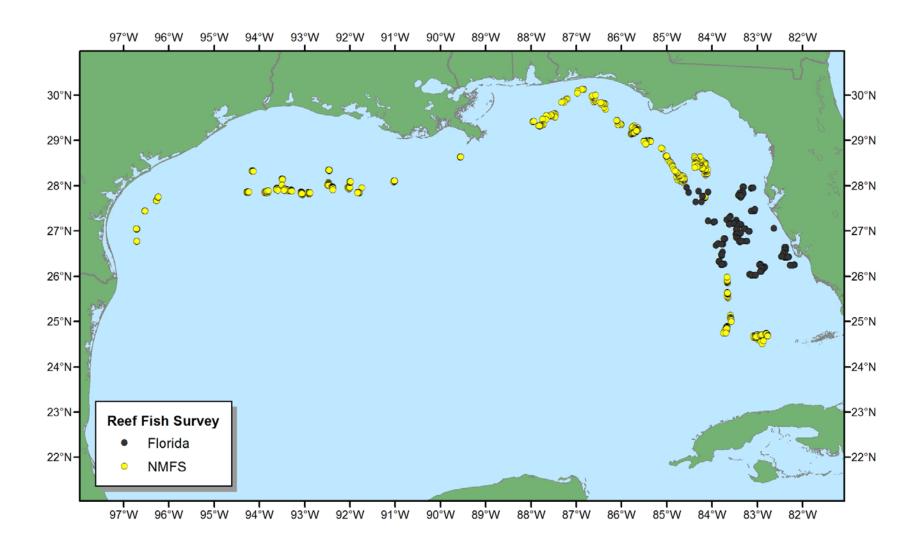


Figure 7. Locations of stations during the 2012 Reef Fish Survey.

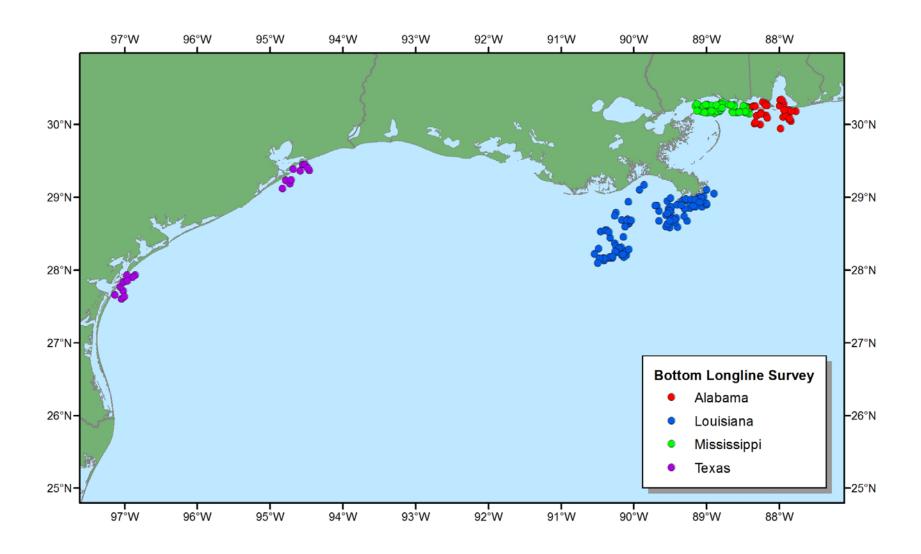


Figure 8. Locations of stations during the 2012 Inshore Bottom Longline Survey.

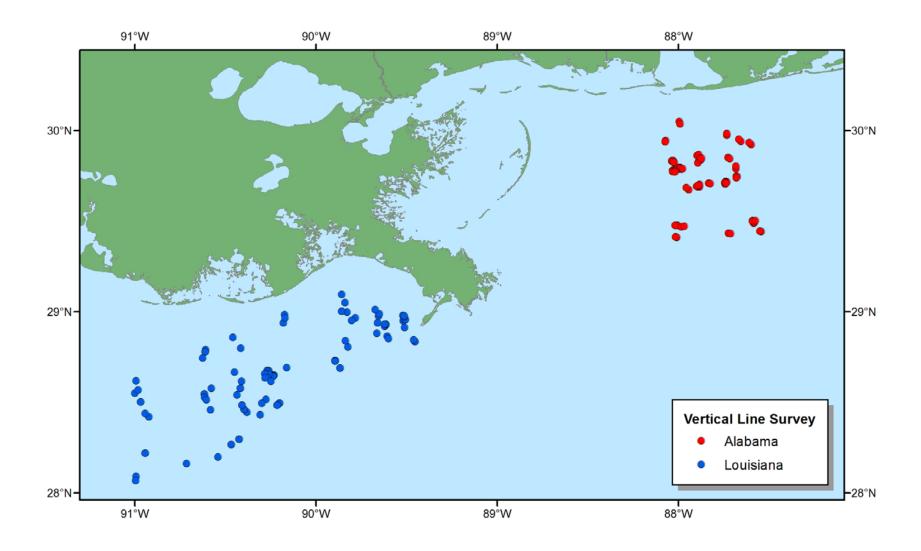


Figure 9. Locations of stations during the 2012 Vertical Line Survey.